
NMST539

Mnohorozměrná analýza
Multivariate Analysis

(Data Science 3)

Lecture Notes O (prerequisites)

Ivan Mizera

Matrix Trix

1

Arrays of numbers; matrices

An array of numbers is a (rectangular) structure with its elements
(or components) indexed by several integers ik in the range
1, 2, . . . ,nk; we speak about n1×n2× · · · ×nd array

The most prominent instance of such an array are matrices, with
d = 2; they are represented as p × q tables with elements aij,
where customarily i indexes a row and j a column of such a table

There is some confusion with words “size” and “dimension” here:
it may happen that one speaks about a matrix with dimension
p× q, but in the context of arrays, every matrix has dimension
d = 2, and then may have size p×q

If one or several of the indices are kept fixed, the pertinent elements
form subarrays; for matrices, the important subarrays are rows
(row index is fixed to one value) and columns (column index is
fixed to one value)

2

Some history

Calculus of matrices turned out to be a very useful tool in quantum
mechanics theory - around 1920’s - and then rapidly spread to
other parts of mathematics and computing. Matrix algebra allows
for compact expressions, and is often a sufficient tool in certain
areas of applications

Before matrices became popular, it was habitual to work with
arrays, even more general than matrices, in a componentwise
notation - the algebra of tensors. As tensors have specific meaning
in physics, we rather stick to a word “array” here - similarly as the R
software environment does. The advantage of the componentwise
notation is its generality; its disadvantage is a certain obscurity of
the formulas (which may be quite in the eyes of the beholder)

3

Vectors

Matrix algebra became so popular that other arrays are often
converted to matrices to facilitate manipulations with them (and
thus avoid componentwise notation). The easiest to convert are

vectors - the arrays with only one index, with components
a1,a2, . . . ,ap. They can be accommodated into matrix algebra
either as 1×p or p× 1 matrices - the latter being the convention
we will hereafter adhere to

(Interestingly, the software environment R supports “ambiguity” in
the representation of vectors: they may be either lines or columns,
depending on the context)

Some advanced part of statistics (nonlinear regression or
multivariate analysis, for instance) require from time to time
working with arrays other than matrices or vectors. To avoid
the componentwise notation here, various ways to accommodate
arrays into matrix algebra were devised. The simplest one is
vectorization: the d-dimensional array is converted into a vector
in a reverse lexicographic order: the last index changes least often.
For matrices it means that columns are stacked into one column
in their order - a block vector is made out of columns

4

Block matrices, vectors, and other tidbits

We can form arrays from smaller arrays by stacking them in
one index, provided that other indices of the stacked arrays are
matched. A common way is to form a bigger matrix from
submatrices, or a vector by stacking several vectors. A matrix
can be considered stacked from columns or rows.

Matrix algebra of block matrices and vectors is guided by a
simple principle: blocks behave analogously as simple elements,
provided that all the dimensions match - regarding stacking and
multiplication

The transposition of matrices is denoted by T , symbol ′ being
reserved for derivatives

The determinant of a square matrix is written as det(A) - the
notation that allows for considering its absolute value as |det(A)|

A diagonal matrix is any one that has nonzero elements possible
only on the diagonal: aij = 0 for i 6= j; it is not necessarily a
square matrix. On the other hand, diag(u) denotes the p × p
diagonal matrix with u forming its diagonal

5

Componentwise

Despite the versatility of matrix calculus, in some situations is
better to use the componentwise notation; for instance, matrix
multiplication of a p × q matrix A by a q × r matrix B yields
elementwise a p× r matrix C with elements indexed by i and k

cik =
∑
j

aijbjk

One can then also easily handle the componentwise multiplication
(a default in R, the .* multiplication in MATLAB): if both A and
B are both p × q matrices, then their componentwise product
(sometimes called Hadamard product) is a p × q matrix C with
the elements

cij = aijbij

Such products are sometimes converted to matrix products, but
the result may be less intuitive: for instance, when one wants to
multiply every line of a p × q matrix B (a vector if q = 1) by
corresponding elements of a p× 1 vector u, one has to express a
matrix with elements cij = uibij as diag(u)B,

6

Trace: a trivial but useful tool

The trace of a (square) matrix is the sum of its diagonal elements:

tr(A) =
∑
i

aii

A useful property of the trace is

tr(AB) = tr(BA)

This is a very simple example where the componentwise notation
really helps, as∑

j

∑
i

aijbji corresponds to the left-hand side and

∑
i

∑
j

ajibij corresponds to the right-hand side

in particular, tr(ABT) = tr(BTA) = tr(ATB) = tr(BAT) =
∑
i,j

aijbij

The property is often used in the so-called “trace trick”: when one
of the product matrices has size 1×1, then its single element is is
equal to its trace

7

Norms, distances, angles

The Euclidean norm of any array is the square root of the sum
of squares of all its elements; the norm of a vector x is ‖x‖ =

√
xTx

For matrices, the Euclidean norm is often called Hilbert-Schmidt
or Frobenius norm; the norm of a general matrix A is equal to√∑

i,j

a2
ij =

√
tr(ATA) =

√
tr(AAT)

In the matrix algebra context, no special notation for scalar (inner)
product is needed: we can write xTy, which is the same as yTx

The Euclidean distance of two vectors (points) is: ‖x− y‖

The angle between two vectors is given by: cosϕ =
xy

‖x‖‖y‖

(Cauchy)-(Schwarz)-((Bunjakovski)) inequality says: |xy| 6 ‖x‖‖y‖
the equality true only when x and y are collinear (linearly dependent)

8

Orthogonal matrices and transformations

Matrices correspond to the transformations they represent - to
an extent that we often use the same adjective for matrices
and transformations: for instance, we speak about invertible
matrices/transformations

(Note: the adjective “invertible” for matrices is preferred to
the adjective “regular”, which in English terminology may have
different meaning - although “singular” usually means the same)

A matrix is called orthogonal, if its transpose is its inverse:
UT = U−1 or equivalently, UTU = UUT = I

(Orthogonal matrices thus have orthonormal rows and columns;
but they are customarily not called orthonormal themselves)

Orthogonal transformations, transformations represented by
orthogonal matrices, preserve Euclidean distances and angles.
The determinant of an orthogonal matrix is equal to −1 or
1; an important subclass of orthogonal transformations with
determinant equal to 1 are rotations; beware that applied data-
analytic terminology tends often to identify the class of rotations
with the class of all orthogonal transformations

9

Diagonalization

Many operations on matrices are much simpler when performed on
diagonal matrices; thus, change of coördinate systems that makes
a matrix diagonal can be quite helpful.

If this is possible for a matrix A, it means that there is an invertible
matrix U such that A = ULU−1 and L is a diagonal matrix

For symmetric matrices, we enjoy a stronger form of
diagonalizability, in which U can be taken orthogonal: every
symmetric matrix A can be written in a form A = ULUT, where
U is an orthogonal matrix and L is a diagonal matrix

Recall: if Ax = λx for a nonzero vector x 6= 0, then λ is called an
eigenvalue of A and x is its corresponding eigenvector (that is,
one of these eigenvectors, as any cx for c 6= 0 qualifies too)

It is easy to see then that the diagonal of L consists of all
eigenvalues and U consists of their corresponding eigenvectors with
unit norm. A p × p symmetric matrix A has thus at most p
eigenvalues (and all its eigenvectors and eigenvalues are real)

10

Symmetrization

While the diagonalization tricks can be performed also for A more
general than symmetric, given the fact that we will need that pretty
much exclusively for handling quadratic forms, there is no need
for complications in that direction; matrices generating quadratic
forms can be considered symmetric without loss of generality:

xTAx = xT

(
1

2
(A+ AT)

)
x as (AB)T = BTAT

This is important, as the original matrix A may not be
diagonalizable, while its symmetrization (A+ AT)/2 always is

11

Nonnegative definite or positive semidefinite?

A symmetric matrix A is nonnegative definite (sometimes they
also say positive semidefinite) if xTAx > 0 for every x

The diagonalization trick shows that it is if and only if all the
eigenvalues of A are nonnegative. In such a case, we can form a
square root of matrix: A1/2 = UL1/2UT

Matrix A is positive definite if xTAx > 0 for every x 6= 0. This is
true if and only if all its eigenvalues are positive; in that case it is
also invertible (“regular”), as that is ture when all the eigenvalues
are nonzero - the inverse is then UL−1UT

12

Diagonalization helps

The above shows how certain operations can be extended to
diagonalizable matrices: first you define the operation for diagonal
matrices (usually componentwise) and then use diagonalization.
For instance, one can define eA in this way

The trace of a matrix is a sum of its eigenvalues

The eigenvalues of a symmetric and idempotent (AA = A) matrix
are equal to the squares of themselves: thus they are either 0 or 1.
The rank of A is therefore equal to its trace

Matrices AB and BA (when both products are square matrices)
have the same nonzero eigenvalues

13

The theorem of Eckart and Young

Let S be a symmetric nonnegative definite matrix; its best
approximation by a symmetric matrix, in the Hilbert-Schmidt norm,
that has rank at most m, is the matrix ULmUT, where S = ULUT

is the eigenvalue decomposition of S, and Lm is the matrix formed
from L by retaining the m largest eigenvalues, and replacing
everything else by zero.

Let A be an arbitrary matrix. The Hilbert-Schmidt distance of S
and A is

tr ((S− A)(S− A)T) = tr (UUT(S− A)UUT(S− A)T)

= tr (UT(S− A)UUT(S− A)TU)

= tr ((UTSU−UTAU)(UTSU−UTAU)T)

= tr ((L−UTAU)(L−UTAU)T) etc.

14

Rank

The linear space generated by the columns of an n× p matrix X
is M(X) = Im(X) = {Xy : y ∈ Rp}

Its dimension is equal to the rank of the matrix, rank(X)

Rank of the matrix is equal to the rank of its transpose, which in
turn is equal to the rank of their product

rank(X) = rank(XT) = rank(XTX)

(Otherwise, the rank of a product of two matrices is only 6 than
the ranks of each)

15

Kronecker product

One way of converting the 4-dimensional array with elements that
have the special product form aijbk` to a matrix is as follows: if we
consider aij to be the elements of a p×q matrix A, and respectively
bij to be the elements of an r× s matrix B, then their Kronecker
product (sometimes called tensor product) is a pr×qs matrix

A⊗ B =

a11B a12B . . . a1qB
a21B a22B . . . a2qB

...
ap1B ap2B . . . apqB

The eigenvalues of A⊗B are all the products of of the eigenvalues
of A and eigenvalues of B; in the coördinatewise notation,∑

j

aijuj = λuui and
∑
`

bk`vk = λvvk implies

∑
j

∑
`

aijbk`ujvk = λuλvuivk

16

Derivatives of functions with matrices

For a function F defined on arrays X of the same dimension and size,

with elements x, we define
∂F(X)

∂X
to be the array with elements

∂F(X)

∂x
(and the same dimension and size as X). If X is a matrix,

∂F(X)

∂X
is the matrix with

∂F(X)

∂Xij
in i-th row and j-th column

We have - mostly by straightforward componentwise verification -

∂aTx

∂x
= a

∂xTAx

∂x
= (A+ AT)x

∂aTXa

∂X
= aaT ∂ log det(X)

∂X
= (X−1)T

Differentiation is sometimes used to verify that something is
a solution of a minimization problem - but for the complete
verification, one seldom wants to take also second derivatives.
A better strategy is to use the Cauchy-Schwarz inequality, or
convexity

17

Singular value decomposition (SVD)

Let A be an arbitrary p×q matrix

Singular value decomposition (SVD): A = UΛVT

where U and V are orthogonal - p× p and q×q, respectively

and Λ is p×q diagonal with diagonal elements

λi > 0 (singular values)

Let us test it in R

> A = cbind(c(1,2,3),c(2,5,4))

> A

[,1] [,2]

[1,] 1 2

[2,] 2 5

[3,] 3 4

18

???

> sa=svd(A)

> sa

$d

[1] 7.6203733 0.9643188

$u

[,1] [,2]

[1,] -0.2932528 -0.08121183

[2,] -0.7017514 -0.65838502

[3,] -0.6492670 0.74828724

$v

[,1] [,2]

[1,] -0.4782649 0.8782156

[2,] -0.8782156 -0.4782649

> sa$u %*% diag(sa$d) %*% t(sa$v)

[,1] [,2]

[1,] 1 2

[2,] 2 5

[3,] 3 4

19

Economy class

Again, there are two versions of SVD: the one introduced above,
and the other, “economy” version, in which:

- if p > q: V as above, Λ as above, but square, q×q

and then only first q columns of U are taken: which means that U
has orthonormal columns, UTU = I, but is not orthogonal, as UUT

may differ from I

- if p 6 q, then the other way round: Λ is p×p, U is square p×p
and thus orthogonal, and V has orthonormal columns, VTV = I

20

Let us test it

> sa$u %*% t(sa$u)

[,1] [,2] [,3]

[1,] 0.0925926 0.25925926 0.12962963

[2,] 0.2592593 0.92592593 -0.03703704

[3,] 0.1296296 -0.03703704 0.98148148

> t(sa$u) %*% sa$u

[,1] [,2]

[1,] 1 0

[2,] 0 1

> sa$v %*% t(sa$v)

[,1] [,2]

[1,] 1 0

[2,] 0 1

> t(sa$v) %*% sa$v

[,1] [,2]

[1,] 1 0

[2,] 0 1

21

Full (“business class”) version in R

> sa=svd(A,nu=dim(A,1))

> sa

$d

[1] 7.6203733 0.9643188

$u

[,1] [,2] [,3]

[1,] -0.2932528 -0.08121183 -0.9525793

[2,] -0.7017514 -0.65838502 0.2721655

[3,] -0.6492670 0.74828724 0.1360828

$v

[,1] [,2]

[1,] -0.4782649 0.8782156

[2,] -0.8782156 -0.4782649

22

Testing...

> t(sa$u) %*% sa$u

[,1] [,2] [,3]

[1,] 1.000000e-00 0.000000e+00 -9.714451e-17

[2,] 0.000000e+00 1.000000e+00 -1.387779e-16

[3,] -9.714451e-17 -1.387779e-16 1.000000e+00

> t(sa$v) %*% sa$v

[,1] [,2]

[1,] 1 0

[2,] 0 1

> sa$v %*% t(sa$v)

[,1] [,2]

[1,] 1 0

[2,] 0 1

> sa$u %*% diag(sa$d) %*% t(sa$v)

Error in sa$u %*% diag(sa$d) : non-conformable arguments

> sa$u %*% rbind(diag(sa$d),c(0,0)) %*% t(sa$v)

[,1] [,2]

[1,] 1 2

[2,] 2 5

[3,] 3 4

23

Mathematical Leftovers

24

Convexity

25

Probability Tidbits

26

Transformation of a density

Suppose that X is a p-dimensional random vector with density g(x),
and let Y = T(X), where T is a mapping from Rp to Rp possessing
an inverse T−1. If X has a probability density (with respect to the
Lebesgue measure on Rp) h(x), then Y has a density

h(T−1(x))|det(JT−1(x))| =
h(T−1(x))

|det(JT(x))|

where JT denotes the Jacobi matrix consisting of partial

derivatives
∂Ti(x)

∂xj

If T(x) = Ax+ b, then JT = A

27

Statistical Notions Perhaps Not That Known

28

Invariance and equivariance

Question: do functions used in statistics behave well when
their arguments, say, change units? General problem: how
these functions change under various transformations of their
arguments? Sometimes they are

invariant: do not change under transformation

equivariant: do change under transformation, but appropriately

(We prefer to work with these notions intuitively rather than in a
stricxt mathematical formalism)

29

Examples

Mean or median are equivariant under shifts: if we add b to all
their arguments, the mean or median also increase by b

Mean or median are also equivariant under the affine
transformation: if we change each x to ax + b, they change in
the same way

The standard deviation is equivariant under the scale change - if
we multiply all arguments by a > 0, then standar deviation also
gets multiplied by a - but it is invariant under shifts: if we add b
to all arguments, standard deviation remains unchanged

The issue with mathematical formalization is that more
sophisticated behavior is possible: for instance, the variance is
still invariant under shifts, but it equivariance behavior under scale
change is different: if each argument gets multiplied by a > 0, the
variance gets multiplied by a2

30

Nonparametric Univariate Statistics Recalled:
Kernel Density Estimation

31

The probability density can be estimated?

> attach(Trackmen)

> plot(density(marathon))

> points(marathon,rep(0,length(marathon)),pch=4)

120 130 140 150 160 170

0.
00

0.
02

0.
04

0.
06

0.
08

density(x = marathon)

N = 55 Bandwidth = 2.59

D
en

si
ty

32

Kernel density estimator

f̂(x) =
1

nb

∑
i

K

(
xi− x

b

)
kernel:

∫
K(u)du = 1 and also K(u) > 0

Examples: Gaussian (standard normal density), Epanechnikov,
Rectangular (Parzen), and others

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

gaussian

−3 −2 −1 0 1 2 3

0.
00

0.
10

0.
20

0.
30

epanechnikov

−0.5 0.0 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rectangular

What does rectangular kernel mean? For b = 1, 1
n

∑
iK(xi− x) is

the relative proportion number of points falling into [x− 1/2,x+
1/2]; for general b, we obtain the relative proportion of points
falling into [x−b/2,x+b/2], divided by the length b of the interval.

33

Different bandwidth

The same bandwidth b may not equally adapt to all parts of the
data

100 120 140 160 180

0.
00

0
0.

01
0

0.
02

0
0.

03
0

density(x = marathon, bw = 10)

N = 55 Bandwidth = 10

D
en

si
ty

130 140 150 160
0.

00
0.

02
0.

04
0.

06
0.

08
0.

10
0.

12

density(x = marathon, bw = 1)

N = 55 Bandwidth = 1

D
en

si
ty

34

Note: there may be better estimators...

100 110 120 130 140 150 160 170 180 190
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

35

Nonparametric Bivariate Statistics Missed:
Smoothing Splines

And Some New Statistics Too

36

History

Whittaker (1923), “graduation” of actuarial mortality table

Given y1,y2, . . . ,yn, find ŷ1, ŷ2, . . . , ŷn such that
n∑
i=1

(yi− ŷi)
2 + λ

∑
(∆2ŷi)

2 # min
ŷ

!

Here λ > 0. Objective: to rid the original data of fluctuations

37

General functional fitting

We now formulate the initial problem in a functional, that is,
infinite-dimensional space

Given y1,y2, . . . ,yn, and x1 < x2 < · · · < xn, find f such that

- f(x1), . . . , f(xn) fit well y1,y2, . . . ,yn

- but at the same time, f is not too “wiggly”, not too
“rough”

(Some simplification here. We assume that no two xi’s coincide,
which in practice may happen: we can have several observations
with the same xi. In practice this makes no problem, but the
exposition is simpler without that)

Note first that least-squares or any other measure of lack-of-fit
does not yield an unambiguous solution:

n∑
i=1

(yi− f(xi))
2 = 0 when yi = f(xi)

- and there are many such functions

38

Roughness penalty

The way out is to propose some measure of “wiggliness”:

- take some derivative f the fitted function: f ′, or f′′, or f′′′

- then take its absolute value or square (magnitudel; sign is
irrelevant)

- and finally make it global: integrate over x

For instance, J(f) =

∫
(f ′′(x))2dx; or J(f) =

∫
|f ′′(x)|dx

Such J(f) will be referred to as (roughness) penalty.

To gain some partial insight about such a penalty, it may be
instructive to investigate which f satisfy J(f) = 0; for both
examples of J given above, we obtain that f is linear, f(x) = α+βx.

And now, how to employ this penalty:

39

Penalized fitting

We can seek a fit with guaranteed wiggliness
n∑
i=1

(yi− f(xi))
2 # min

f
! J(f) 6Λ

which via Lagrange multiplier theory (but for inequalities, not
equalities!) is equivalent to

n∑
i=1

(yi− f(xi))
2 + λJ(f) # min

f
!

in the following sense: for any tuning constant Λ there is another
tuning constant λ > 0, with unambiguous (but typically not
explicit) relationship to Λ

Schoenberg (1964): smoothing splines
n∑
i=1

(yi− f(xi))
2 + λ

∫
(f ′′(x))2dx# min

f
!

There are mathematical details here, which we omit. However the
question is: why splines?

40

Because the solutions are splines

The solution of the smoothing spline problem is a natural cubic
spline, with knots at xi (and only xi)

Also, “natural”: it just says that outside of knots it continues
linearly. The first two derivatives (for a cubic spline) are to be
matched: that is, at the extremal knots the first derivative, and
also the second one, which is zero (second derivative of a linear
function)

Note: once f(xi) given, the solution is found by minimizing J(f)

That gives the linearity of f outside the knots; inside of the knots,
some further mathematics (it may be simply integration by parts)
shows that...

... the solution to the smoothing spline problem, exists within the
class of natural cubic splines, with knots at xi (and only at xi)

41

Finitary perspective

The original problem acted in the general functional spaces; now,
however, we are in the finite dimensional space: all natural splines
with given knots (finite number of knots, right?) can be written
as linear combination of some (finite) basis functions

f(x) =
∑
j

bjgj(x)

With some skill, we rewrite everything as a finite-dimensional
problem in bj - and in fact a quadratic one, as

- we are doing least-squares fitting) problem

- and the penalty has some square in it too, so it can be written
as a quadratic form in bj

42

And finally it is easy

So the original
n∑
i=1

(yi− f(xi))
2 + λ

∫d
c

(f ′′(x))2dx# min
f

!

becomes (y− Lb)T(y− Lb) + λbTGb# min
b

!

where L is a linear operator (=matrix) yielding the functional values
at the xi’s in terms of the bj’s, and G defines a quadratic form
related to the penalty

(the solution in fact solves the system LTL+ λGb = LTy)

43

Remarks

The selection of the basis does not play a role, as long as the bases
are equivalent (they generate the same linear spaces, any function
that is a linear combination in one base, is a linear combination in
another one)

Thus, we have something more general than just bases here...

The aforementioned technical issue: if xi have duplicate values
among them, we should take some care; there is no problem in the
first, lack-of-fit part of the objective function, but the second,
penalty part, should involve only “cleaned” xi, with duplicates
removed.

44

Regularization

One can use splines in regression in several ways:

- for instance, take the class of splines with several fixed knots and
estimate their coefficients by simple least-squares fitting - which
makes no problems if the number of fitted parameters is less than n
(this is referred to as regression splines)

- or take many knots - possibly every xi is a knot - then stipulate
that the fit is a spline (that is, specify a basis and continue in
finitary manner); we have now too many parameters, but we can
still use (Tikhonov) regularization via a penalty (note that it is a
different one):

n∑
i=1

(yi−
∑
j

βjgj(xi))
2 + λ

∑
j

β2
j # min

β
!

(this is referred to as penalized splines)

- or we can do it as above: formulate it in the infinite-dimensional
space of funtions and only then take the finitary interpretation via
so-called representer theorem smoothing splines)

45

Regularization: not only splines

In classical least squares regression estimation we seek β
minimizing least squares lack-of-fit criterion (y− Xβ)T(y− Xβ)

The necessary condition to obtain a solution is that X has full rank,
or, equivalently XTX is invertible. What to do if this is violated,
either approximately or exactly: for instance, when the number of
predictors exceeds the number of datapoints: p > n?

We can replace the simple minimization of sum of squares by a
penalized one: seek β minimizing

(y− Xβ)T(y− Xβ) + λβTβ

This is referred to as ridge regression (originally proposed for the
problems when the matrix XTX has problems with invertibility), and
is a special case of (Tikhonov) regularization

The penalty being the square of the `2 norm makes it quite
amenable to solving via linear equations: note that the matrix
(XTX+ λI) is invertible for any λ > 0, yielding the solution

β̂ = (XTX+ λI)β = XTy

46

Atomic pursuit (LASSO)

So, regularization prescriptions construct fits by trading off
between (a general) lack-of-fit criterion and (also general)
penalty. The extent of this trade-off is controled by smoothing,
regularization parameter λ.

An instance of this generality is an alternative of the ridge
regression called atomic pursuit, more widely known as LASSO:
instead of the `2 one uses the `1 penalty; if β = (β1,β2, . . . ,βp)T,
the minimized function is

(y− Xβ)T(y− Xβ) + λ
∑
j

|βj|

Why such an alternative? While for λ > 0 it still handles situations
when X is not of full rank (for instance when p > n), the absolute
value in the penalty causes the resulting vector β of estimates to
be sparse - to contain only few nonzero elements

This is unlike the ridge regression, which returns solutions that are
rather nonzero; even for the regressors that do not have predictive
value for the response, it tends to return estimates that are small
in magnitude, but still not exactly zero

47

Another instance: tree-based methods

There is also an instance in tree-based methods (compare later):
the function to be minimized is

R+α size

where

- R is the lack-of-fit criterion here

- size is the complexity measure (penalty)

- and λ is called α instead

48

The catch: the tuning knob of regularization

Regularization prescriptions thus construct fits by trading off
between (a general) lack-of-fit criterion and (also general)
penalty. The extent of this trade-off is controled by smoothing,
regularization parameter λ.

It is a tuning parameter: if we go back to the original formulation
of smoothing splines, we notice

- for large λ the penalty prevails: the fit is linear

- for λ→ 0 (λ = 0 won’t fly!) the lack-of-fit prevails: the fit, if
there are no duplicates in the xi’s, is just the spline interpolation
of the data

Of course, this is nice - but what is the right λ??

(Several ways to tackle this question...)

49

Revenue passenger airmiles flown by US airlines

1940 1945 1950 1955 1960

0
50
00

10
00
0

15
00
0

20
00
0

25
00
0

30
00
0

1947-1960

ai
rm
ile
s

Various λ

1.0
0.1
0.5

> legend(locator(),lty=c(3,2,1),legend=c(’1.0’,’0.1’,’0.5’))

The legend command does not show λ but spar. A closer look at
help(smooth.spline) reveals that spar is a monotonous function of
λ, normed so that spar lies between 0 and 1.

50

Finesses of the R implementation I

> plot(1937:1960,airmiles,xlab=’1947-1960’)

> title(expression(paste("Various ",lambda)))

> xx=seq(1937,1960,len=400)

> smsp=smooth.spline(1937:1960,airmiles,spar=1)

> lines(xx,predict(smsp,xx)$y,lty=3)

> smsp

Call:

smooth.spline(x = 1937:1960, y = airmiles, spar = 1)

Smoothing Parameter spar= 1 lambda= 0.9681153

Equivalent Degrees of Freedom (Df): 2.063613

Penalized Criterion: 197298405

GCV: 9840216

51

Finesses of the R implementation II

> smsp=smooth.spline(1937:1960,airmiles,spar=.1)

> lines(xx,predict(smsp,xx)$y,lty=2)

> smsp

Call:

smooth.spline(x = 1937:1960, y = airmiles, spar = 0.1)

Smoothing Parameter spar= 0.1 lambda= 3.045644e-07

Equivalent Degrees of Freedom (Df): 22.97617

Penalized Criterion: 34624.87

GCV: 792768.6

> smsp=smooth.spline(1937:1960,airmiles,spar=.5)

> lines(xx,predict(smsp,xx)$y)

> smsp

Call:

smooth.spline(x = 1937:1960, y = airmiles, spar = 0.5)

Smoothing Parameter spar= 0.5 lambda= 0.0002363563

Equivalent Degrees of Freedom (Df): 7.460656

Penalized Criterion: 6128442

GCV: 537681.1

52

