Hydrology of the Czech Republic

RNDr. Dagmar Chalupová, Ph.D.

dagmar.chalupova@natur.cuni.cz

Water on the Earth

• surface -510 mil. km² -360,7 mil. km² =70,7% ocean

Components of hydrosphere	Volume [thousands of km ³]	% of total amount of water
Ocean	1 360 000	97,6784
Glaciers + permanent snow	24 000	1,7237
Atmosphere (to 11 km)	13	0,0009
Freshwater lakes	130	0,0093
Salt lakes	105	0,0075
Artificial reservoirs	6	0,0004
Wetlands	6	0,0004
Rivers	1,25	0,0001
Soil moisture	25	0,0018
Water in aeration zone	40	0,0029
Water in saturation zone	8000	0,5746
TOTAL WATER SUPPLY	1 392 325,25	100

• Freshwater – only 3% (glaciers 79%, underground 20%, surface 1%)

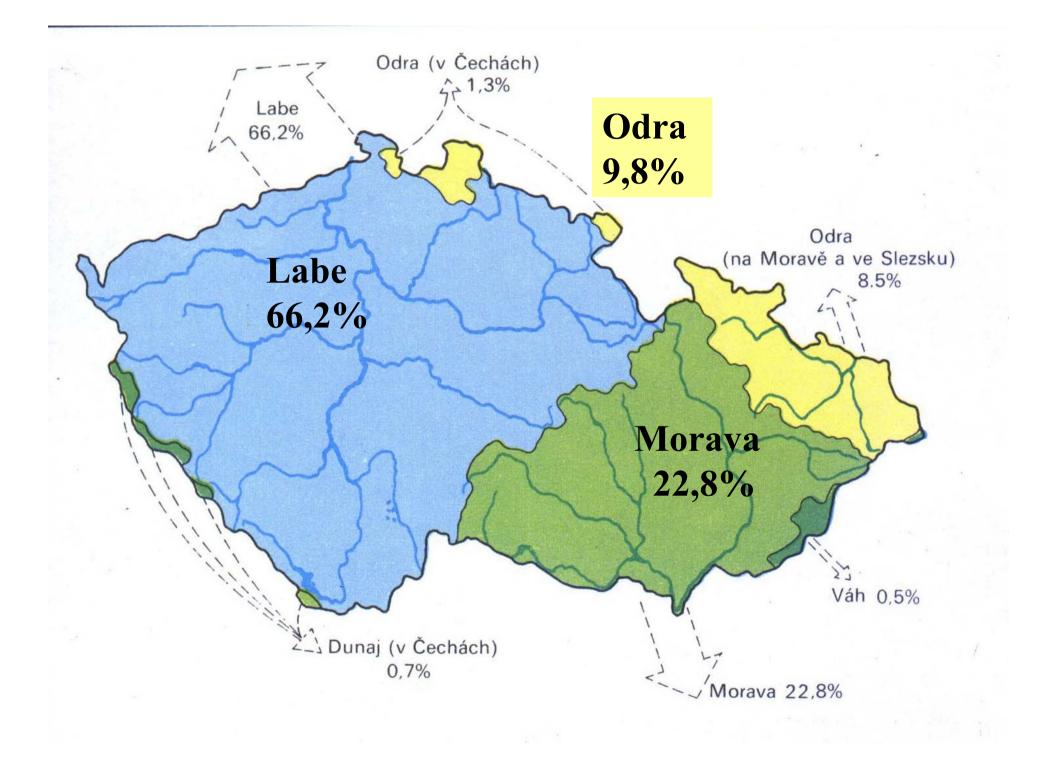
Water on the Earth

Longest rivers:

Amazon - 7 062 km Nile – 6 695 km Jang c'ťiang – 6 300 km Mississippi–Missouri – 6 275 km Yenisey-Angara-Selenga – 5 539 km **Biggest glaciers:** Antarctica + Greenland = 98% Himalayas, Pamir, Cordillera and others only 2%

Artificial reservoirs: Bratsk (Angara) - 170 km³ Asuan (Nile) - 169 km³

Kariba (Zambezi) - 160 km³

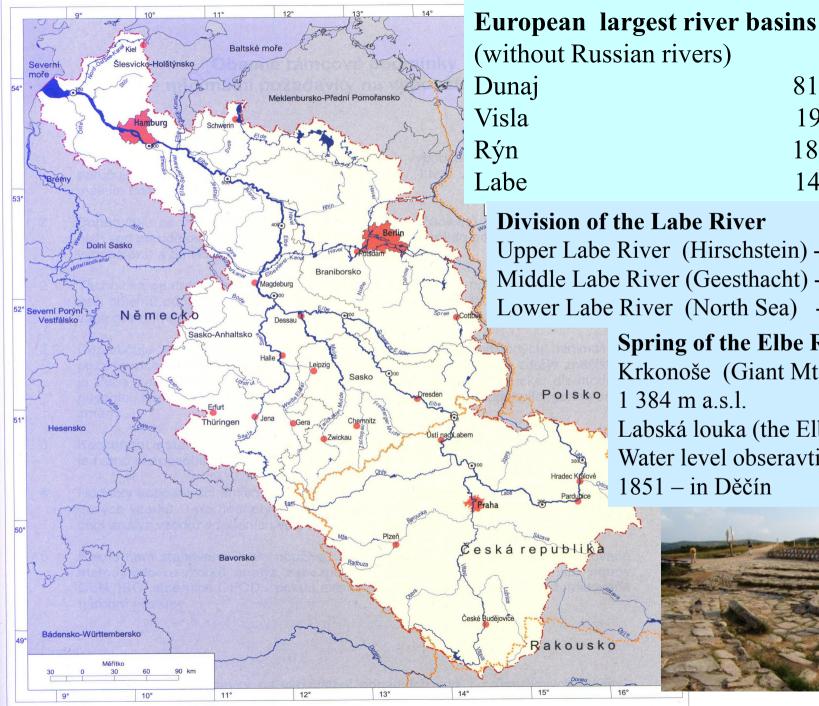

Biggest freshwater lake areas:

 American Great Lakes - 25% cca 32 500 000 km³ (Lakes Superior, Michigan, Huron, Erie and Ontario)
 African rift valley lakes - 22% cca 29 000 000 km³ (Lakes Tanganyika, Victoria, Malawi, Albert, Edward etc.)
 Baikal Lake - 18% cca 21 500 000 km³

Basic hydrographic characteristics of Czechia

- Czechia is situated in central Europe in the source area of European rivers (we are on the roof of Europe)
- Main European watershead contour come through Czechia
 3 separate sea-drainage areas:

North sea – catchement of Labe66,2%Black sea – catchement of Dunaj24,0%Baltic sea – catchement of Odra9,8%


Hydrographic and water management review

Total lenght of streams in Czechia			76 000 km		
- basic net of streams (over 5 km ²)			36 865 km		
Streams impo	ortant for wat	er manageme	nt	16 700 km	
Small stream	S			59 300 km	
Modified stre	ams - 25%	from total len	ght	18 784 km	
Lenght of artificial canals			-	578 km	
Lenght of flo	Lenght of flood banks			586 km	
C					
Total volume of 114 big reservoirs (over 1000 m³)3,141 km³				km ³	
- water-supply reservoirs			0,934 km ³		
Total area of reservoirs (including small water bodies)			l water bodies)	264	
Name	Area [ha]	Depth	Volume [km ³]	Year	River
Orlík	2545,54	74	0,717	1960	Vltava
Lipno I	4909,76	22	0, 306	1957	Vltava
Nechranice	1307,77	46	0, 288	1968	Ohře
Slapy	1241,15	58	0, 269	1955	Vltava
Švihov	1337,55	55,7	0, 266	1968	Želivka

The biggest rivers of Czechia

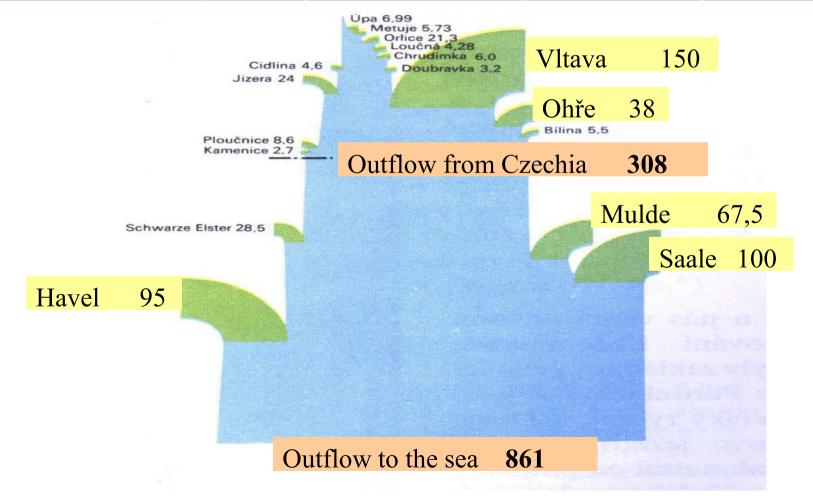
River discharge (m ³ .s ⁻¹)
Labe (Elbe)	308
Vltava (Moldau)	150
Morava	115
Dyje (Thaya)	44,1
Odra (Oder)	43,3
Ohře (Eger)	3 7,9
Berounka	36,0
Otava	26,0
Sázava	25,5
Lužnice	24,4
Jizera	24,0

817 000 km² 194 000 km² $183\ 000\ {\rm km^2}$ 148 268 km²

Division of the Labe River

16°

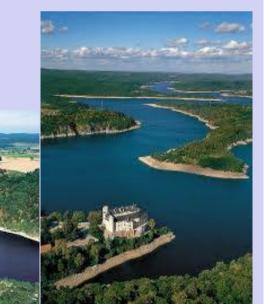
Upper Labe River (Hirschstein) - 463 km Middle Labe River (Geesthacht) - 489 km Lower Labe River (North Sea) - 142 km


Spring of the Elbe River Krkonoše (Giant Mts.)

1 384 m a.s.l. Water level obseravtions since 1851 – in Děčín

the Labe River – growth of discharge[m³.s⁻¹]

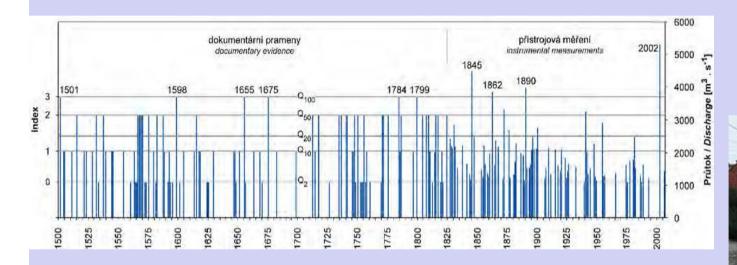
	Vltava - mouth	Labe – confluence with Vltava	Labe - state border	Labe - North Sea
Length [km]	433	235	357	1094
Discharge [m ³ .s ⁻¹]	150	100	308	861
Area [km ²]	28 090	13 714	51 394	148 268



the Vltava River - dams

- Czech longest river 433 km
- Spring 1 172 m a.s.l. Šumava Mts.
- "Vltava Cascade" 9 dams
- regular water level observation in Prague since 1825

		1		1
	River km	Name	Building	Volume tis. m ³
	329,540	Lipo I	1952–1959	306 000
	319,120	Lipno II	1952-1959	1 685
	210,390	Hněvkovice	1986–1992	21 100
*	200,405	Kořensko	1986–1991	2 800
Ikava	144,700	Orlík	1954–1966	720 000
8	134,730	Kamýk	1956–1962	12 800
Vyrovka	91,694	Slapy	1951–1954	270 000
S	84,440	Štěchovice	1937–1945	11 200
Suren	71,325	Vrané	1930–1936	11 100
	the the	Mil.		



the Vltava River - floods

Floods in Prague

- August 2002: max. discharge 5 300 m^3 .s⁻¹, max. water level 785 cm
- July 2013: max. discharge $-3 210 \text{ m}^3.\text{s}^{-1}$, max. water level 545 cm

http://www.geoportalpraha.cz/uploads/assets/video-povoden/povoden.html

2002 - Malostranská

2013

Drought

Characteristics

- a random natural phenomenon caused mainly by rainfall deficit leading to a significant drop in water in various parts of the hydrological cycle (in the atmosphere, soil, watercourses, underground structures) and subsequently also in water resources
- water scarcity = water use requirements exceed available water resources

Types

Meteorological - a prolonged time with less than average precipitation; precedes the other kinds of drought *Hydrological* - water reserves (aquifers, lakes, rivers and reservoirs) below a locally significant threshold (e.g. Discharge Q₃₅₅ in 3 days); show up slowly; anthropogenic measures (landuse, wetland drainage etc.) can improve or worsen the situation

- *Agricultura*l soil drought, lack of moisture for crops; crop production affected; after meteorologicalvdrought; important role of agricultural management
- *Socioeconomic* economic activities limited as a result of meteorological, agricultural or hydrological drought

Prevention: landuse, water bodies, wetlands

Drought

[mm]

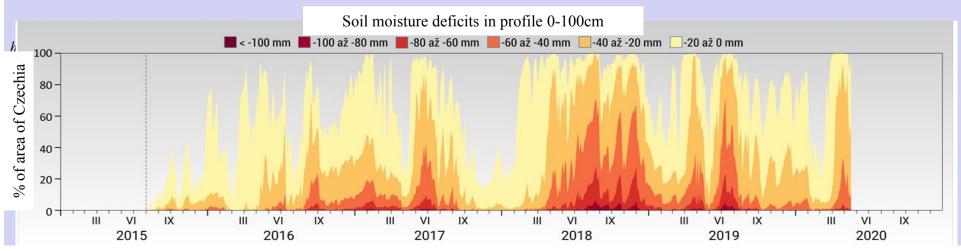
100.0

50.0 0.0

-50.0

-100.0

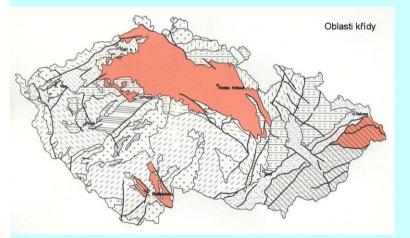
-150.0


-200.0

Precipitation deficits

1.3.201 1.5.201 1.7.201 1.9.201 1.1.201 1.1.201 1.1.201 1.3.201 1.5.201 1.5.201

The driest years in Czechia (based on meteorological and hydrological observations, since the 20.century)


- 1904
- 1911- summer lack of rainfall and higher temperatures
- 1917
- 1947!! lack of rainfall and higher temperatures from April to October
- 1953-1954!!! March 53 and from August to March 54 lack of precipitation, very cold winter
- 1959 lack of precipitation in autumn
- 1992
- 2000 lack of precipitation in spring with higher temperatures for the whole year
- 2003 lack of precipitation from February to September with high temperatures also in Europe
- 2015 summer and autumn, lack of precipitation from the beginning of the year, high temperatures, lack of snow, consequences several years
- 2018! from April to November 2018, in lowlands till autumn 2019, low precipitation, high temperatures, problems in agriculture, water supply private wells, measures taken for the population e.g.: ban on filling the pools, garden watering...

Outflow characteristics of Czechia

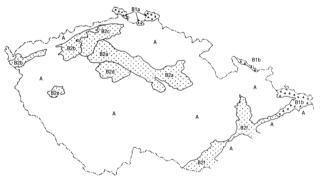
Average annual outflow from Czechia = O

Hs = average annual sum of precipitation $(1 \text{ mm} = 1 \text{ litre on } 1 \text{ m}^2)$ Ho = average annual sum of surface outflow (Ho = O/P – P of Czechia = 78 000 km²) C = outflow coeficient (c = Ho/Hs*100) Extreme dry years (1947)

Annual capacity of underground resources

Cretaceous sediments (Mesozoic era)

Quaternary sediments

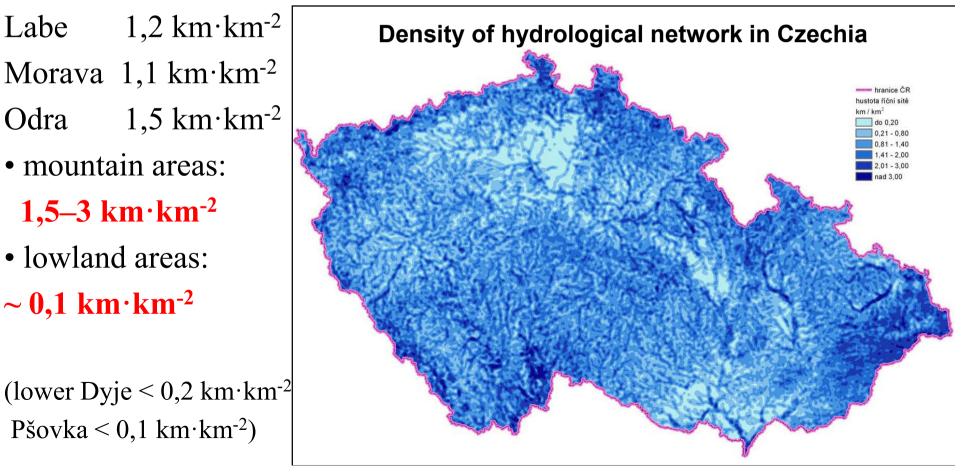

Other (84% of area)

15,1 km³

679 mm

189 mm

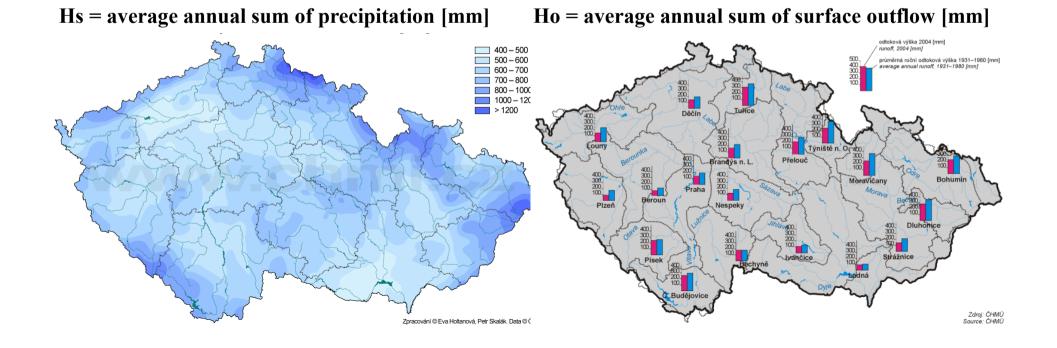
27,8 % 436 mm



Kvartér českého masivu A – denudačni oblasti; B – akumulačni oblasti: B la – oblast kontinentálniho zalednéni severních Čech, B lb – oblast oderská. Extraglaciální oblasti: B2a – Polabí, B2b – podkrušnohorské pánve. B2c – České středohoří, B2d – Pražská plošina, B2e – Plzeňská kotlina, B2f – moravské úvaly (podle usnesení Čs. stratigrafické komise, J. Tyráček – M. Růžička 1992).

> 1,44 km³ 0,44 km³/year 0,42 km³/year 0,58 km³/year

Density of hydrological network


- most of the rivers in the Czechia 0,1–3 km·km⁻² (average ~ 1 km·km⁻²)
- data for catchments of following rivers:

Outflow characteristics of Czech rivers

Outflow (runoff) coefficient [%] c = Ho/Hs*100

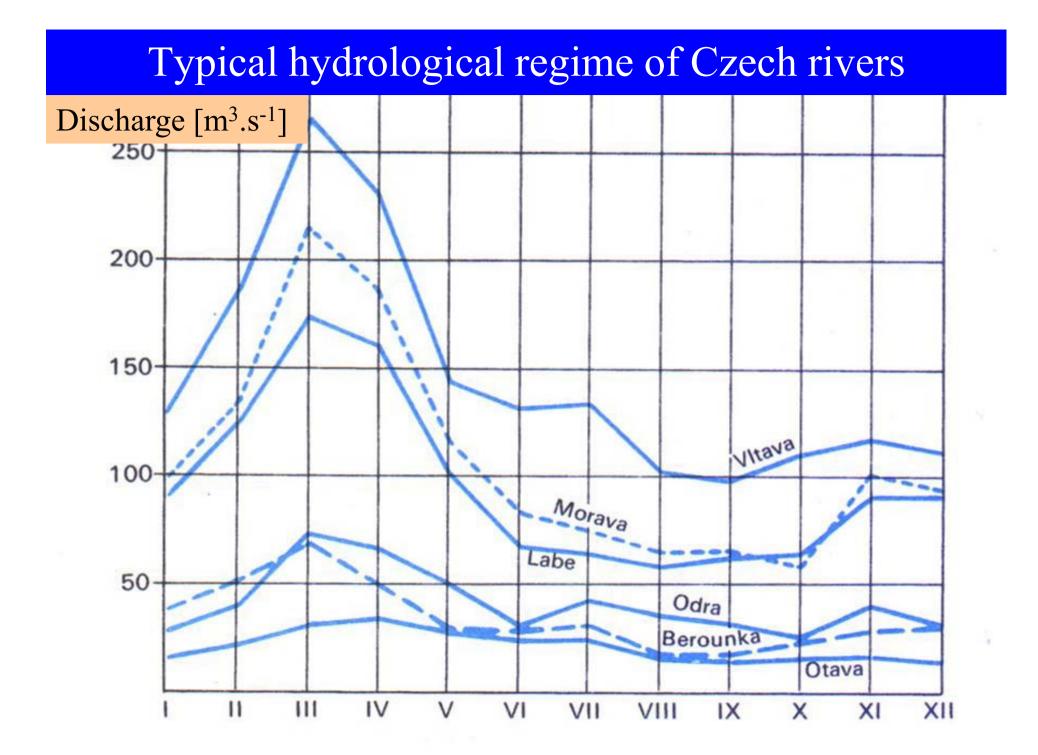

- varions catchments differ between 10 60 %
- highest values in Moravsko-Slezké Beskydy Mts. (rivers Morávka, Ostravice),
- lowest values: tributaries of middle Labe (Pšovka), lower Vltava (Zákolanský p.) and lower Dyje (Kyjovka)

Outflow characteristics of Czech rivers

Runoff unit-yield $[1 \cdot s^{-1} \cdot km^{-2}] q = O/s^*P$

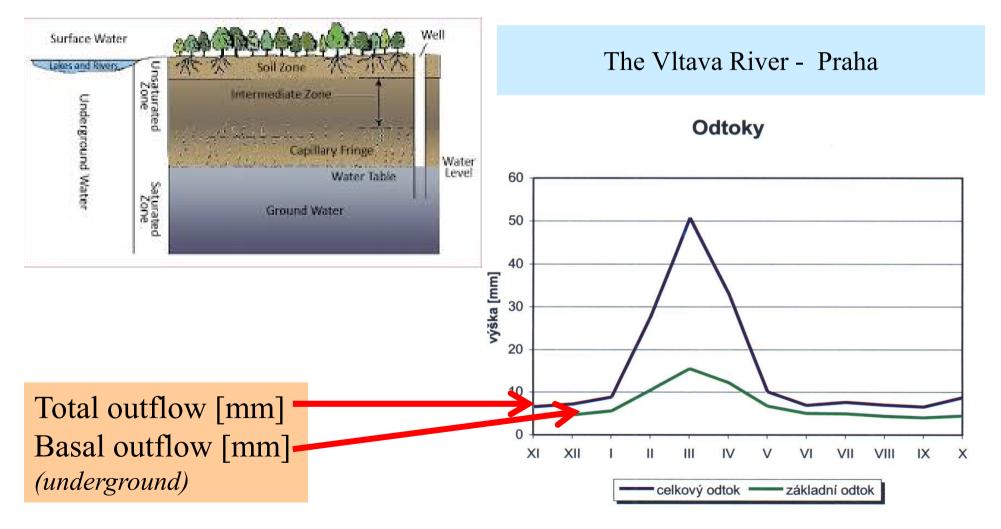
- in Czechia about 1–25 $l\cdot s^{-1}\cdot km^{-2}$ (average value ~ 6 $l\cdot s^{-1}\cdot km^{-2}$)
- the Labe River catchment **6 l** · **s** ⁻¹ · **km** ⁻²
- the Morava River catchment 4,5 l·s⁻¹·km⁻²
- the Odra River catchment **10** l·s⁻¹·km⁻²
- headstream areas 20–35 l·s⁻¹·km⁻² (Morávka, Olše, Ostravice, Morava, Labe)
- lowlands (central Polabí, lower Povltaví and Podyjí) $\sim 1-3 l \cdot s^{-1} \cdot km^{-2}$, Dyje-Svratka revine $\leq 1 l \cdot s^{-1} \cdot km^{-2}$

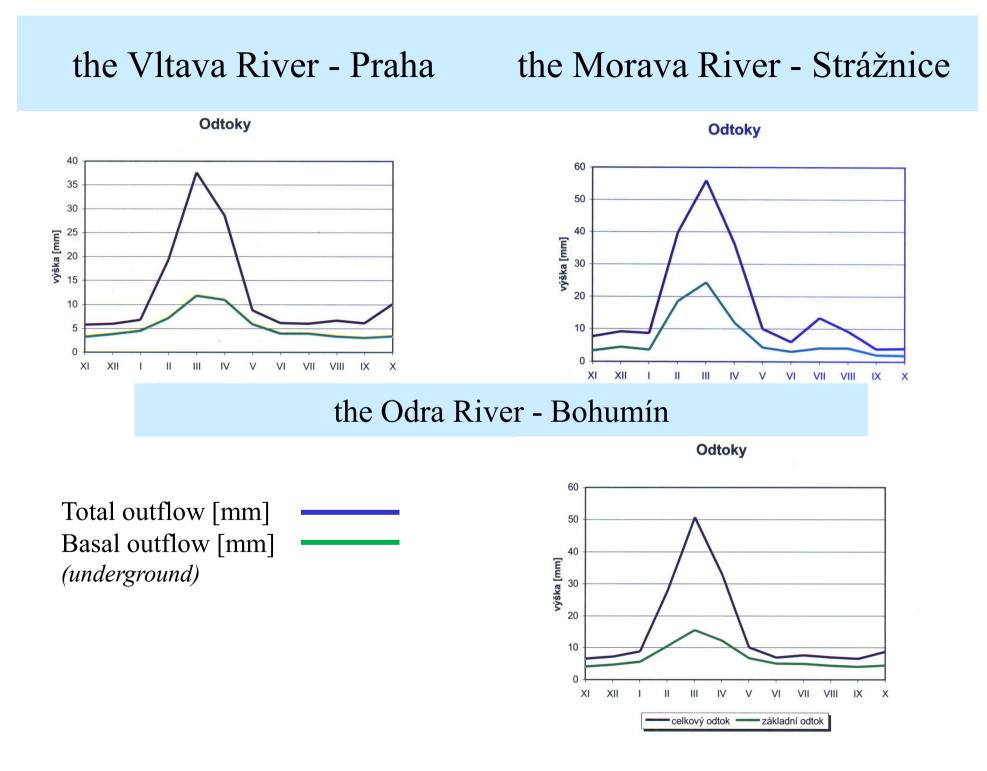
Hydrological regime of Czech rivers


Main sources of water:

rain precipitations + *snow melting*

- complex outflow regime: *pluvio-nival* (subtype continental Europe)
- over altitude 800 m a.s.l. *nival-pluvial* regime


Maximum discharge: spring – snow melting + autumn rains; frequent floods in summer – storm rainfalls


Minimum discharge: lowlands and uplands in autumm (September); mountain areas at the end of winter (February)

Total outflow

Total outflow = surface outflow + uderground outflow Surface outflow – water level in rivers Underground = Hypodermic outflow (Zone of Aeration) + Basal outflow (Zone of Saturatioin) Basal outflow – water level in hydrogeological wells

Consumption of water in Czechia 1965 - 1990

1965	5,5 km ³

1970	$7,7 \text{ km}^3$
1975	10.9 km ³

- 1980 15,5 km³
- 1990 21,0 km³

Water provided:

80% surface sources20% underground sources

developed countries:
diminution of water usage of about 25 % during last 20 years

Usage of water – world 90s

5%	drinking water
75%	agriculture
20%	industry

Usage of water – the Czech Republic 90s		
38 %	drinking water	
4 %	agriculture	
32 %	industry + services	
26 %	energetics	

Water use in Czechia

Since 1993 – decline of water usage per capita:

1993 – 343 1/capita/day 2000 – 245 1/capita/day

2016 – 132 l/capita/day 2019 – 91 l/capita/day

Decline of water consumption according to sectors during the years 1990 – 1999:

Agriculture – 88 % Industry – 47 % Energetics – 48 %, Drinking supply – 34 %

Main reasons:

decrese of industrial and agricultural production, environmental technologies, price of water (2016 – water & sewage 37 Kč/m³ & 32 Kč/m³)

Hydrological management in Czechia

Main authorities for water law:

Ministry of Agriculture – National Plan, water management in the Czech Republic Ministry of Environment - National Parks, protected areas Ministry of Health – limits for drinking water, bathing norms Ministry of Transport - navigation Ministry of Defense – water as a strategic resource

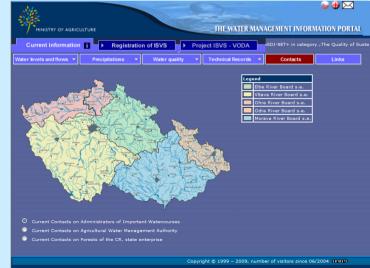
Executive and monitioring role:

- the Labe River Authority http://www.pla.cz (Hradec Králové)14 976 km²
- the Morava River Authority http://www.pmo.cz (Brno) 21 133 km²
- the Vltava River Authority http://www.pvl.cz (Praha) 27 580 km²
- the Ohře River Authority http://www.poh.cz (Chomutov) 10 098 km²
- the Odra River Authority http://www-pod.cz (Ostrava) 7 246 km²
- Forests of the Czech Republic- http://www.lesycr.cz (Hradec Králové)
- 94 % of streams
- 6 % municipalities, national parks, military areas

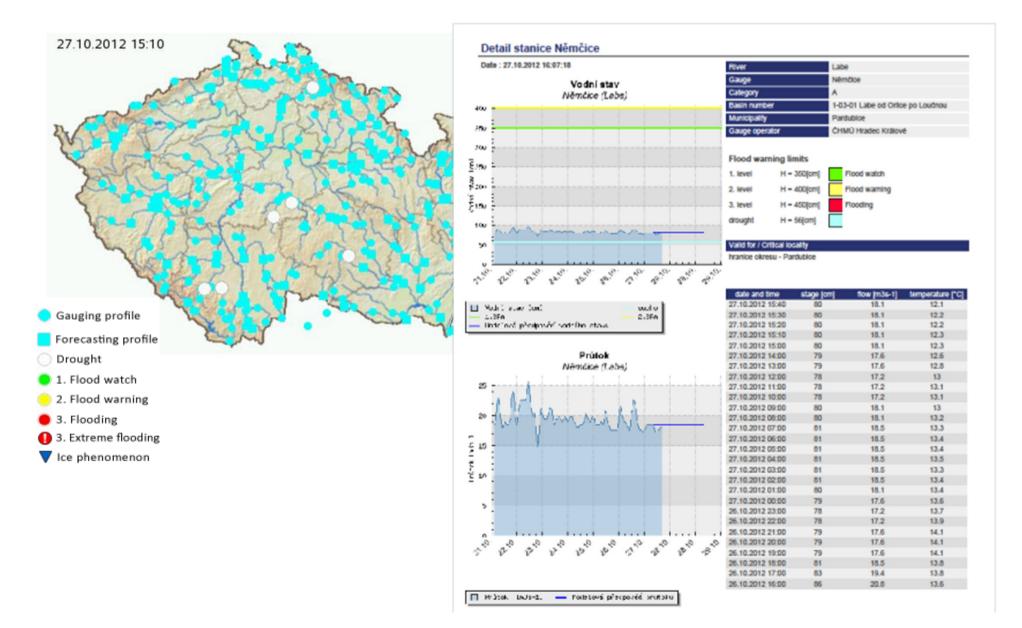
Hydrological monitoring in Czechia

Monitoring

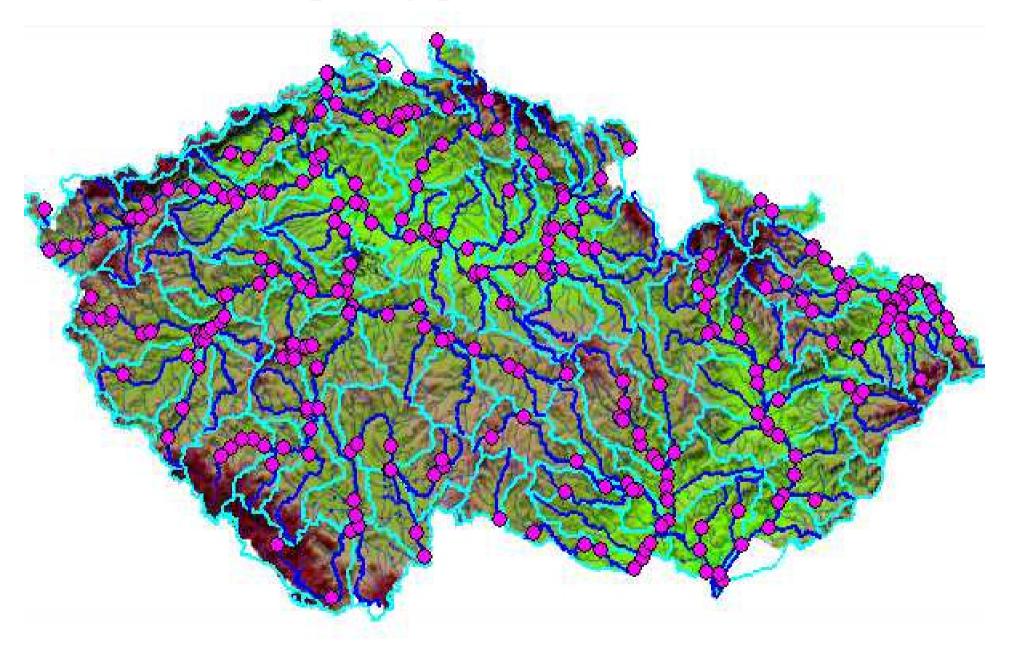
Czech Hydrometeorological Institute & River Authorities

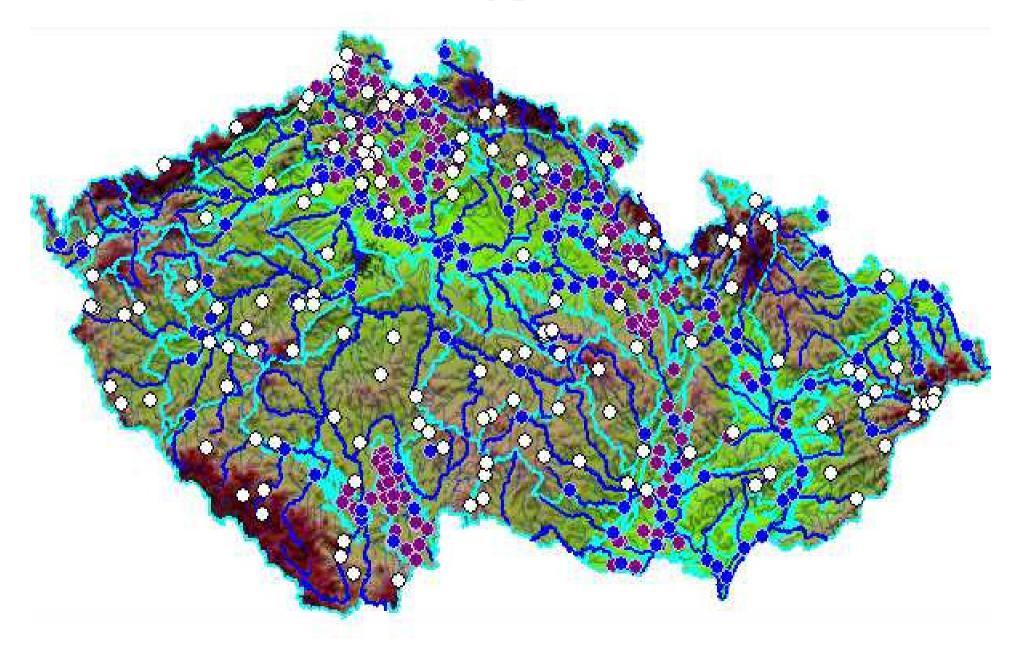

-stable profile network + special-purpose profiles

- -water level measurement gauging stations
- -water quality sampling
- -sediment & suspended matter sampling, biota sampling (benthos, fish)
- -forecasts, assessment, measures


T.G.M Water Research Institute ASCI ČR, Research Institute for Soil and Water Conservation ASCI ČR, Czech Geological Survey, universities, Environmental institutions, nongovernmental organisations etc...

DATA: Information portals:


The water management information portal (Ministry of Agriculture) http://voda.gov.cz/portal/en/


www.chmi.cz – Czech Hydrometeorological Institute Flood forecasting service (CHMI) http://hydro.chmi.cz/hpps/index.php

Surface water quality profiles

Groundwater monitoring profiles

