Life-Long Education programsLife-Long Education programs(version: 178)
 
   Login via CAS
Deep Learning (11504)
Basic information
Charles University
Deep Learning
admission procedure in progress
Variant code (CID): 11504
Orientation: microcredentials
Faculty: Faculty of Mathematics and Physics
 
full-time
Presential
English
Deep Learning
The objective of this course is to provide a comprehensive introduction to deep neural networks, which have consistently demonstrated superior performance across diverse domains, notably in processing and generating images, text, and speech.

The course focuses both on theory spanning from the basics to the latest advances, as well as on practical implementations in Python and PyTorch (students implement and train deep neural networks performing image classification, image segmentation, object detection, part of speech tagging, lemmatization, speech recognition, reading comprehension, and image generation). Basic Python skills are required, but no previous knowledge of artificial neural networks is needed; basic machine learning understanding is advantageous.

Students work either individually or in small teams on weekly assignments, including competition tasks, where the goal is to obtain the highest performance in the class.
The course covers the following techniques and tasks:
• Feedforward deep neural networks (basic architectures and activation functions; optimization algorithms)
• Regularization of deep models (L2, dropout, label smoothing, batch normalization)
• Convolutional neural networks (image classification, image segmentation, object detection, fine-tuning pre-trained models)
• Recurrent neural networks (LSTM, GRU, seq2seq)
• Transformer architecture
• Natural language processing (distributed and contextualized word representations, BERT, morphological tagging, named entity recognition, lemmatization, machine translation)
• Deep generative models (variational autoencoders, generative adversarial networks, diffusion models, image and speech generation)
• Structured prediction (CTC and speech recognition, seq2seq)
• Introduction to deep reinforcement learning
The applicants should have basic Python programming skills and basic knowledge of algebra (matrices and vectors) and calculus (what is a derivative). However, it is also possible to acquire this knowledge during the course through self-study. Previous knowledge of machine learning is not necessary.
Knowledge: The student describes and explain the basic building blocks of deep neural networks (FFN, RNN, CNN, Transformer), basic architectures (processing and generation of images, text, speech), optimization algorithms (SGD, Adam) and regularization techniques (dropout, batch norm, …). The student characterizes the frameworks and hardware accelerators for the implementation of deep neural networks.

Skills: The student implements the above-mentioned basic architectures in a framework for an implementation of deep neural networks. The student is able to use a HW accelerator for training. The student understands a scientific paper from the field of deep learning.

Competence: The student proposes a method to solve a new (previously unknown to them) problem from the field of image/text/speech processing, and implements and evaluates it themselves.
https://ufal.mff.cuni.cz/courses/npfl138
Guarantor Phone number E-mail
RNDr. Milan Straka, Ph.D. 951554361 straka@ufal.mff.cuni.cz
Accreditation
11000 - Univerzita Karlova
249/24
29.5.2024
29.5.2034
Further detailed information
8
210 (total number of hours)
délka kurzu je včetně očekávané domácí práce (to je přesně z žádosti o akreditaci; vychází pak 26.25 hodin práce na jeden kredit; tato hodnota musí být v rozsahu 25-30). Samotná přímá výuka činí necelých 50 šedesátiminutých hodin (65 vyučovacích hodin o délce 45 minut), zbytek je samostatná práce.
1
Software and applications development and analysis (0613)
Marked assignment
Written examination
Level Knowledge Responsibility and autonomy Qualifications
Level 7 Highly specialised knowledge, some of which is at the forefront of knowledge in a field of work or study, as the basis for original thinking and/or research Specialised problem-solving skills required in research and/or innovation in order to develop new knowledge and procedures and to integrate knowledge from different fields Manage and transform work or study contexts that are complex, unpredictable and require new strategic approaches; take responsibility for contributing to professional knowledge and practice and/or for reviewing the strategic performance of teams
17.2.2025
29.5.2034
Institutional Quality Assurance
Ensured by CU’s IEB as a part of the internal quality assurance process
Ensured by CU’s IEB as a part of the internal quality assurance process
Date and venue of the course
18.02.2025
30.9.2025
samotné přednášky končí 22. května 2025, úkoly je možné vypracovávat do 30. června 2025, zkoušku je možné složit do konce akademického roku
2024/2025
summer semester
Malostranské náměstí 25 , 118 00, Praha
S5 / S3 / S9 (jsou dvě paralelní přednášky, dvě paralelní cvičení a nepovinná konzultace; vše je vždy z jedné z uvedených učeben)
Information for applicants
Lecturer Phone number E-mail
RNDr. Milan Straka, Ph.D. 951554361 straka@ufal.mff.cuni.cz
5000 Kč / course
03.02.2025
09.03.2025
Bc. Magdaléna Kokešová
magdalena.kokesova@matfyz.cuni.cz
95155 1630
Enrolment information
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html