Řešení navigace a bojových setkání ve hře Doom
Thesis title in Czech: | Řešení navigace a bojových setkání ve hře Doom |
---|---|
Thesis title in English: | Solving navigation and combat encounters in Doom |
Academic year of topic announcement: | 2024/2025 |
Thesis type: | diploma thesis |
Thesis language: | |
Department: | Department of Software and Computer Science Education (32-KSVI) |
Supervisor: | RNDr. Martin Pergel, Ph.D. |
Author: | hidden![]() |
Date of registration: | 28.01.2025 |
Date of assignment: | 28.01.2025 |
Confirmed by Study dept. on: | 15.04.2025 |
Advisors: | Mgr. Peter Guba |
Guidelines |
Doom is a first-person shooter game from 1993 where the player is tasked with navigating a series of levels and eliminating hostile monsters while managing resources such as health and ammunition.
The goal of this thesis is to create an AI agent, that would be capable of solving (completing) any winnable level. This AI agent should simulate player inputs as the game records them as demos and can play these demos back. Thus, a sub-goal of this thesis is to keep demo compatibility. Doom's code is open source and there are many source ports (that are also open source) that allow running Doom on modern hardware. For this thesis, we modify one such source port (primarily, the applicant focuses on DSDA Doom). The agent is expected to have an access to the current map (i.e., knows the positions of items). During the solution, several algorithms should be explored for each particular subproblem where it is possible. The agent should be tested using the original maps available in the game. |
References |
H. Fuchs, Z. Kedem, B Naylor: On visible surface generation by a priori tree structures, ACM, 1980, ISBN 0897910214,
S. Ar, B. Chazelle, A. Tal: Self-customized BSP trees for collision detection, Elsevier, 2000, ISSN 0925-7721, S. Russel, P. Novig: Artificial Intelligence A Modern Approach (third edition), Pearson, 2009, ISBN: 978-0-13-604259-4, N. Pelechano, C. Fuentes: Hierarchical path-finding for Navigation Meshes, Computers & graphics 95, 2015, ISSN: 0097-8493, R. Studiawan: Tactical Planning in Space Game using Goal/Oriented Action Planning, J. on Advanced Research in Electrical Engineering 2, 2018 ISSN: 2580-0361, R. Fikes, N. Nilsson: Strips: A new approcach to the application of theorem proving to problem solving, Artificial Intelligence 2(3-4), 1971, ISSN 0004-3702, M. Gross, D. Zühlke, B. Naujoks: Automating Speedrun Routing: Overview and Vision, LNCS 13224, Springer 2022, ISSN: 0302-9743. |