Thesis (Selection of subject)Thesis (Selection of subject)(version: 381)
Thesis details
   Login via CAS
Implementing incomplete inverse decomposition on graphical processing units
Thesis title in Czech: Implementace neúplného inverzního rozkladu na grafických kartách
Thesis title in English: Implementing incomplete inverse decomposition on graphical processing units
Key words: Přibližná inverze, neúplná faktorizace, grafický procesor
English key words: Approximate inverse, incomplete decomposition, graphical processing unit (GPU)
Academic year of topic announcement: 2012/2013
Thesis type: diploma thesis
Thesis language: angličtina
Department: Department of Applied Mathematics (32-KAM)
Supervisor: prof. Ing. Miroslav Tůma, CSc.
Author: hidden - assigned and confirmed by the Study Dept.
Date of registration: 18.07.2013
Date of assignment: 18.07.2013
Confirmed by Study dept. on: 18.07.2013
Date and time of defence: 02.09.2013 00:00
Date of electronic submission:31.07.2013
Date of submission of printed version:02.08.2013
Date of proceeded defence: 02.09.2013
Opponents: František Hakl
 
 
 
Guidelines
Incomplete inverse decompositions represent a set of tools used to precondition iterative methods on high-performance computer architectures. This follows from the fact that an application of the decomposition within a modern Krylov subspace method reduces to one or two matrix-vector multiplications, and such operations are considered as efficiently parallelizable. Nevertheless, the decomposition itself does not parallelize well on multiprocessors. Jan Dědeček should study in his diploma Thesis possibilities to evaluate approximate inverse decompositions on graphical processing units (GPUs). These processors seem to offer an environment that could speed up the construction
References
M.~Benzi. Preconditioning techniques for large linear systems: a survey., J. Comput. Phys., 182(2):418--477, 2002.
M.Benzi, J.K. Cullum, and M. Tuma. Robust approximate inverse preconditioning for the conjugate gradient method., SIAM J. Sci. Comput., 22(4):1318--1332, 2000.
G.H. Golub and C.F. Van Loan., Matrix Computations. 3rd ed., the Johns Hopkins University Press, Baltimore and London, 1996.
M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems., J. Res. Nat. Bur. Standards, 49:409--435, 1952.
Y.~Saad. Iterative Methods for Sparse Linear Systéme. PWS Publishing Co., Boston, 1996.
J. Sanders, E. Kandrot. CUDA by Example: An Introduction to General-Purpose GPU Programming, Addison-Wesley, 2010.
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html