Problém vlastních čísel symetrických řídkých matic v souvislosti s výpočty elektronových stavů
Thesis title in Czech: | Problém vlastních čísel symetrických řídkých matic v souvislosti s výpočty elektronových stavů |
---|---|
Thesis title in English: | Special eigenvalue problems for symmetric sparse matrices related to electronic structure calculations |
Key words: | DFT, FEM, Lanczosova metoda, rank-n-update, vlastní čísla |
English key words: | DFT, FEM, Lanczos method, rank-n-update, eigenvalues |
Academic year of topic announcement: | 2010/2011 |
Thesis type: | diploma thesis |
Thesis language: | čeština |
Department: | Department of Applied Mathematics (32-KAM) |
Supervisor: | prof. Ing. Miroslav Tůma, CSc. |
Author: | hidden - assigned and confirmed by the Study Dept. |
Date of registration: | 15.12.2008 |
Date of assignment: | 15.12.2010 |
Confirmed by Study dept. on: | 07.10.2011 |
Date and time of defence: | 28.05.2012 10:00 |
Date of electronic submission: | 13.04.2012 |
Date of submission of printed version: | 13.04.2012 |
Date of proceeded defence: | 28.05.2012 |
Opponents: | Ing. Jiří Plešek, CSc. |
Guidelines |
1) Seznamte se s metodou FEM (Finite-Element Method, metoda konečných prvků).
2) Seznamte se se základními rysy výpočtů elektronových stavů v rámci DFT (Density Functional Theory) metodou separabilních ab-initio pseudopotenciálů - z matematického pohledu, aniž by byly nezbytné znalosti všech fyzikálních souvislostí. 3) Formulujte problém vlastních čísel po diskretizaci stacionární Schroedingerovy rovnice (v rámci uvedené metody pseudopotenciálu) metodou konečných prvků. Formulujte, jaké vlastnosti budou mít vzniklé řídké matice a za jakých podmínek. 4) Porozumějte numerickým metodám řešení nejnižších vlastních čísel pro tyto typy velkých matic (nejnižší vlastní čísla, odpovídají obsazeným elektronovým stavům). 5) Porovnejte různé metody z hlediska použitelnosti pro daný problém. 6) Navrhněte nejvhodnější metodu nebo metody pro studované speciální problémy vlastních čísel. Zabývejte se též vhodnými způsoby implementace se zvláštním zřetelem k dalšímu pokračování spolupráce na projektu po skončení diplomové práce. |
References |
1) C. Kittel: Úvod do fyziky pevných látek, Academia, Praha, 1985
2) W. E. Pickett, Computer Phys. Reports 9, 115 (1989) 3) J. Vackář, A. Šimůnek and M. Hyťha, All-electron pseudopotentials, Physical Review B 58 (1998) 12712 4) J. Vackář and A. Šimůnek, Adaptability and accuracy of all-electron pseudopotentials, Physical Review B 67 (2003) 125113 5) Bathe, K. J.: Finite Element Procedures. Prentice-Hall, New Jersey 1996. 6) Cook, R. D., Malkus, D.S., Plesha, M.E.: Concepts and Applications of Finite Element Analysis. 3rd ed., Wiley, New York 1989. 7) Zienkiewicz, O. C.: The Finite Element Method. 3rd ed., McGraw-Hill, London 1977. 8) Yousef Saad: Iterative Methods for Sparse Linear Systems, SIAM 2000 9) Z. Bai et al.: Templates for the Solution of Algebraic Eigenvalue Problems, SIAM, Philadeplphia PA, 2000 10) Publikace dle doporučení vedoucího a konzultanta |
Preliminary scope of work |
Dosavadní ab-initio metody pro výpočty elektronových stavů, totálních energií a vlastností materiálů jsou buď zaměřeny na periodické struktury (v reciprokém prostoru využívají bázových funkcí Blochovského typu) nebo nevyužívají výhod pokročilých forem nelokálních pseudopotenciálů a pro nízkou efektivitu nejsou aplikovatelné na komplikované materiálové struktury. Navrhovaná diplomová práce je součástí projektu zaplňujícího tuto mezeru, zaměřeného na vytvoření nové metody, založené na funkcionálu hustoty, pro výpočty neperiodických systémů. Tato metoda kombinuje stávající metody využívající diskretizaci konečnými prvky a techniku pseudopotenciálů selfkonsistentně reflektujících prostředí (viz např. Vackář, Šimůnek, Physical Review B 67 (2003) 125113). |