Thesis (Selection of subject)Thesis (Selection of subject)(version: 385)
Thesis details
   Login via CAS
Klasifikace mitotických obrazů u gliomu pomocí konvolučních neuronových sítí s přidanou pozorností
Thesis title in Czech: Klasifikace mitotických obrazů u gliomu pomocí konvolučních neuronových sítí s přidanou pozorností
Thesis title in English: Mitotic Image Classification in Glioma Using Attention-Enhanced Convolutional Neural Networks
Key words: CNNs|Hluboké učení|Pozornost|Gliom
English key words: CNNs|Deep Learning|Attention|Glioma
Academic year of topic announcement: 2024/2025
Thesis type: Bachelor's thesis
Thesis language:
Department: Department of Software and Computer Science Education (32-KSVI)
Supervisor: Kassem Anis Bouali, M.Sc.
Author: Martin Dostál - assigned and confirmed by the Study Dept.
Date of registration: 08.04.2025
Date of assignment: 30.05.2025
Confirmed by Study dept. on: 30.05.2025
Guidelines

This project focuses on classifying mitotic images in glioma using convolutional neural networks enhanced with attention mechanisms. Specifically, the student will compare CNN attention blocks such as Squeeze-and-Excitation (SE) and Convolutional Block Attention Module (CBAM) blocks...etc. The goal is to achieve better predictions to support medical diagnostics in glioma analysis.
References
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539
Guo, MH., Xu, TX., Liu, JJ. et al. Attention mechanisms in computer vision: A survey. Comp. Visual Media 8, 331–368 (2022). https://doi.org/10.1007/s41095-022-0271-y
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html