Thesis (Selection of subject)Thesis (Selection of subject)(version: 390)
Thesis details
   Login via CAS
Class numbers of orders in real quadratic fields
Thesis title in Czech: Třídová čísla řádů v reálných kvadratických tělesech
Thesis title in English: Class numbers of orders in real quadratic fields
Key words: Kvadratické pole|Číselné pole|Třídová grupa|Řád|Relativní třídová grupa|Relativní třídové číslo|Pellová rovnice
English key words: Quadratic field|Number field|Class group|Order|Relative class group|Relative class number|Pell's equation
Academic year of topic announcement: 2024/2025
Thesis type: Bachelor's thesis
Thesis language: angličtina
Department: Department of Algebra (32-KA)
Supervisor: doc. Mgr. Vítězslav Kala, Ph.D.
Author: Arina Beck - assigned and confirmed by the Study Dept.
Date of registration: 10.03.2025
Date of assignment: 10.03.2025
Confirmed by Study dept. on: 10.03.2025
Date and time of defence: 04.09.2025 09:00
Date of electronic submission:17.07.2025
Date of submission of printed version:17.07.2025
Opponents: Subham Roy, Ph.D.
 
 
 
Guidelines
The student will prove Dirichlet's formula for the relative class number by carefully constructing a series of homomorphisms between factors of ideal class groups. Using this formula, she will consider the properties of orders in real quadratic fields of relative class number 1. Moreover, she will relate these to the Ankeny-Artin-Chowla and Mordell Conjectures.
References
Mak Trifcović (2013), Algebraic Theory of Quadratic Numbers, Springer Science+Business Media New York
Debopam Chakraborty and Anupam Saikia (2014), Another look at real quadratic fields of relative class number 1, Acta arithmetica 163.4
Andreas Reinhart (2024), A counterexample to the Pellian equation conjecture of Mordell, arxiv:2402.09827
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html