Thesis (Selection of subject)Thesis (Selection of subject)(version: 385)
Thesis details
   Login via CAS
Univerzalita množin bodů pro alternující hamiltonovské cesty
Thesis title in Czech: Univerzalita množin bodů pro alternující hamiltonovské cesty
Thesis title in English: Universality of point sets for alternating Hamiltonian paths
Key words: geometrický graf|univerzální množina bodů|alternující hamiltonovská cesta
English key words: geometric graph|universal point set|alternating Hamiltonian path
Academic year of topic announcement: 2023/2024
Thesis type: Bachelor's thesis
Thesis language: čeština
Department: Department of Applied Mathematics (32-KAM)
Supervisor: doc. Mgr. Jan Kynčl, Ph.D.
Author: hidden - assigned and confirmed by the Study Dept.
Date of registration: 31.05.2024
Date of assignment: 03.06.2024
Confirmed by Study dept. on: 08.01.2025
Date and time of defence: 11.02.2025 10:30
Date of electronic submission:10.01.2025
Date of submission of printed version:10.01.2025
Date of proceeded defence: 11.02.2025
Opponents: Mgr. Jan Soukup
 
 
 
Guidelines
Úkolem bude pro zadané množiny 2n bodů v rovině zjišťovat, při jakých typech obarvení bodů dvěma barvami existuje alternující hamiltonovská cesta nakreslená pomocí navzájem nekřížících se úseček.

For given sets of 2n points in the plane, the student will investigate for which types of colorings of the points by two colors there is an alternating Hamiltonian path drawn using pairwise noncrossing segments.
References
J. Cibulka, J. Kynčl, V. Mészáros, R. Stolař and P. Valtr, Universal sets for straight-line embeddings of bicolored graphs, in: J. Pach (Ed.), Thirty Essays on Geometric Graph Theory, 101-119, Springer, 2013, ISBN 978-1-4614-0109-4.
A. Kaneko and M. Kano, Discrete Geometry on Red and Blue Points in the Plane - A Survey -, In: Aronov B., Basu S., Pach J., Sharir M. (eds) Discrete and Computational Geometry, Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg, pp 551-570.
M. Kano, J. Urrutia, Discrete geometry on colored point sets in the plane—a survey, Graphs Combin. 37 (2021), no. 1, 1-53.
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html