Thesis (Selection of subject)Thesis (Selection of subject)(version: 390)
Thesis details
   Login via CAS
On Thursday, September 4, 2025, from 8:00 PM to 10:00 PM, there will be an outage of WhoIs system. This will limit work in IS studium. For example, you will not be able to submit thesis. Subscription to courses should remain unaffected by the outage. We apologize for any inconveniece and we thank you for understanding. 
Klasifikace vegetace pomocí shlukování časových řad družicových dat Sentinel-2 v oblasti Krušných hor
Thesis title in Czech: Klasifikace vegetace pomocí shlukování časových řad družicových dat Sentinel-2 v oblasti Krušných hor
Thesis title in English: Classification of Vegetation Types Using Time Series Clustering of Sentinel-2 Satellite Data in the Ore Mountains
Key words: Analýza časových řad, Time series clustering, Sentinel‑2, Vegetační indexy, Biofyzikální parametry, TS‑SVC klasifikace, Google Earth Engine, K-Means, K-Medoids
English key words: Time series analysis, Time series clustering, Sentinel‑2, Vegetation indices, Biophysical parameters, TS‑SVC classification, Google Earth Engine, K-Means, K-Medoids
Academic year of topic announcement: 2023/2024
Thesis type: diploma thesis
Thesis language: čeština
Department: Department of Applied Geoinformatics and Cartography (31-370)
Supervisor: doc. RNDr. Přemysl Štych, Ph.D.
Author: Bc. Lucie Nováková - assigned and confirmed by the Study Dept.
Date of registration: 12.01.2024
Date of assignment: 15.01.2024
Confirmed by Study dept. on: 30.01.2024
Date of electronic submission:30.07.2025
Opponents: doc. RNDr. Mgr. Pavel Švec, Ph.D.
 
 
 
Advisors: Mgr. Daniel Paluba, Ph.D.
RNDr. Josef Laštovička, Ph.D.
References
Neigh, C.S.R.; Bolton, D.K.; Diabate, M.; Williams, J.J.; Carvalhais, N. An Automated Approach to Map the History of Forest Disturbance from Insect Mortality and Harvest with Landsat Time-Series Data. Remote Sens. 2014, 6, 2782–2808.
LASTOVICKA, J.; SVEC, P.; PALUBA, D.; KOBLIUK, N.; SVOBODA, J.; HLADKY, R.; STYCH, P. Sentinel-2 Data in an Evaluation of the Impact of the Disturbances on Forest Vegetation. Remote Sens. 2020, 12, 1914. https://doi.org/10.3390/rs12121914.
LASTOVICKA, J.; SVEC, P.; PALUBA, D.; KOBLIUK, N.; SVOBODA, J.; HLADKY, R.; STYCH, P. Sentinel-2 Data in an Evaluation of the Impact of the Disturbances on Forest Vegetation. Remote Sens. 2020, 12, 1914. https://doi.org/10.3390/rs12121914.
Senf, C., Linden, S., Laštovička, J., Okujeni, A., Heurich, M. A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data, Remote Sensing of Environment. Volume 240, April 2020, 111691. https://doi.org/10.1016/j.rse.2020.111691
HLADKÝ, R.; LASTOVICKA, J.; HOLMAN, L.; STYCH, P. Evaluation of the influence of disturbances on forest vegetation using the Landsat time series, a case study of the Low Tatras National Park. European Journal of Remote Sensing. Volume 53, 2020 - Issue 1. https://doi.org/10.1080/22797254.2020.1713704
STYCH, P.; LASTOVICKA, J.; HLADKY, R.; PALUBA, D. Evaluation of the Influence of Disturbances on Forest Vegetation Using the Time Series of Landsat Data: A Comparison Study of the Low Tatras and Sumava National Parks. ISPRS Int. J. Geo-Inf. 2019, 8, 71. ISSN 2220-9964.
Preliminary scope of work
Diplomová práce se zaměřuje na hodnocení obnovy lesních ekosystémů po proběhlých kůrovcových kalamitách pomocí družicových dat. Využito bude volně dostupných optických i radarových družicových dat Sentinel (Sentinel-1 a Sentinel-2). Hlavním cílem práce je určení míst obnovy lesů a jejich vývojových stádií. Hlavními zkoumanými charakteristikami bude výška, hustota a druhovostní složení obnovovaného lesního porostu. Bude vytvořena metodika/algoritmus ve volně dostupném výzkumném prostředí Google Earth Engine na vyhodnocení obnovy s využitím časových řad družicových snímků.
Preliminary scope of work in English
The master thesis focuses on the assessment of forest ecosystem recovery after bark beetle outbreaks using satellite data. It will use open optical and SAR Sentinel satellite data (Sentinel-1 and Sentinel-2). The main objective of the work is to identify forest recovery areas and their development stages. The main characteristics to be investigated are height, density and species composition of the regenerating forest stand. A methodology/algorithm will be developed in the freely available research platform Google Earth Engine to assess restoration using time series of satellite data.
  • Please note that information collected from descriptive data or files, submitted with the final thesis, cannot be used for profitable purposes or presented as a study, academic or other creative activity of any person other than the author.
Uploaded thesis filesSizeAuthorUploaded byUploaded on
download fileText of the thesis (defended)15443 kBBc. Lucie NovákováBc. Lucie Nováková30.07.2025 18:37
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html