Ultrarychlá elektronická a jaderná dynamika v molekulách studovaná pomocí attosekundových časových zpoždění
Thesis title in Czech: | Ultrarychlá elektronická a jaderná dynamika v molekulách studovaná pomocí attosekundových časových zpoždění |
---|---|
Thesis title in English: | Ultrafast electronic and nuclear dynamics in molecules studied by attosecond time-delays |
Key words: | ultrarychlá fyzika|fotoionizace|R-matice|rezonanční stavy|elektronická struktura |
English key words: | ultrafast physics|photoionization|R-matrix|scattering resonance|electronic structure |
Academic year of topic announcement: | 2023/2024 |
Thesis type: | dissertation |
Thesis language: | čeština |
Department: | Institute of Theoretical Physics (32-UTF) |
Supervisor: | Mgr. Zdeněk Mašín, Ph.D. |
Author: | hidden![]() |
Date of registration: | 25.01.2024 |
Date of assignment: | 25.01.2024 |
Confirmed by Study dept. on: | 12.02.2024 |
Guidelines |
The precursor of chemical reactions is the ultrafast rearrangement of electrons in molecules which takes place on attosecond timescales. In photochemical reactions this dynamics is triggered by absorption of photons. In this work the primary interest will be a theoretical study of ultrafast photoionization processes. The student will investigate theoretically correlated motion of electrons in small and medium-sized polyatomic molecules (CO2, ethylene, CH3I and other iodoalkanes) using the techinques of attosecond physics including attosecond streaking and RABITT (Reconstruction of Attosecond Beating by Interference of Two-photon Transitions). The work will be carried out in close collaboration with several international experimental groups.
To perform the numerical calculations the student will use and further extend the stationary and time-dependent R-matrix ab initio codes UKRmol+ and RMT to use Effective Core Potentials, nuclear derivatives of dipole matrix elements and to perform effective selection of the dominant electronic configurations using Lanczos diagonalization methods. The latter will be employed in simulations of nuclear dynamics in RABITT. An essential part of the work will be a detailed theoretical analysis of the calculated results including developments of simple models to distill an essential understanding of the dominant physical mechanisms. |
References |
[1] Benda, J.; Mašín, Z.; Gorfinkiel, J. D. Analysis of RABITT time delays using the stationary multiphoton molecular R-matrix approach. Phys. Rev. A 2022, 105, 053101.
[2] Benda, J.; Mašín, Z. Multi-photon above threshold ionization of multi-electron atoms and molecules using the R-matrix approach. Scientific Reports 2021, 11, 11686. [3] Benda, J.; Mašín, Z. Dipole-laser coupling delay in two-color (RABBITT) phoionization of polar molecules. arXiv:2209.06676 2022 [4] Mašín, Z.; Benda, J.; Gorfinkiel, J. D.; Harvey, A. G.; Tennyson, J. Comput. Phys. Commun. 2020, 249, 107092 [5] Brown, A. C.; Armstrong, G. S. J.; Benda, J.; Clarke, D. D. A.; Wragg, J.; Hamilton, K.; Mašín, Z.; Gorfinkiel, J. D.; van der Hart, H. Comput. Phys. Commun. 2020, 250, 107062. [6] Patchkovskii, S.; Benda, J.; Ertel, D.; Busto, D. Theory of nuclear motion in RABBITT spectra. Phys. Rev. A 2023, 107, 043105. [8] Dahlström, J. M.; Guénot, D.; Klünder, K.; Gisselbrecht, M.; Mauritsson, J.; L’Huillier, A.; Maquet, A.; Taïeb, R. Theory of attosecond delays in laser-assisted photoionization. Chem. Phys. 2013, 414, 53–64. [8] P.G. Burke, R-Matrix Theory of Atomic Collisions, 1st ed. (2011). [9] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom—Photon Interactions (John Wiley & Sons, Ltd, 1998). [10] Kienberger, R. et al. Atomic transient recorder. Nature, 427(6977):817–821, 2004. |