Thesis (Selection of subject)Thesis (Selection of subject)(version: 385)
Thesis details
   Login via CAS
Transition to quantum turbulence in nanofluidic Helmholtz resonators
Thesis title in Czech: Přechod do kvantové turbulence v nanofluidických Helmholtzových rezonátorech
Thesis title in English: Transition to quantum turbulence in nanofluidic Helmholtz resonators
Key words: Supratekuté hélium|kvantová turbulence|dvou-rozměrné systémy
English key words: Superfluid helium|quantum turbulence|two-dimensional systems
Academic year of topic announcement: 2022/2023
Thesis type: diploma thesis
Thesis language: angličtina
Department: Department of Low Temperature Physics (32-KFNT)
Supervisor: Mgr. Emil Varga, Ph.D.
Author: hidden - assigned and confirmed by the Study Dept.
Date of registration: 05.10.2022
Date of assignment: 05.10.2022
Confirmed by Study dept. on: 28.02.2024
Date and time of defence: 11.09.2024 10:00
Date of electronic submission:18.07.2024
Date of submission of printed version:18.07.2024
Date of proceeded defence: 11.09.2024
Opponents: Clinton A. Potts
 
 
 
Advisors: doc. RNDr. David Schmoranzer, Ph.D.
Guidelines
The goal of the project is to measure and understand the turbulent drag experienced by superfluid helium-4 in a quasi-2D nanofluidic systems with several different boundary geometries in the temperature range of approximately 1.3 - 2.17 K.

The student will use a capacitance bridge technique to characterise the nanofluidic Helmholtz resonances and measure the transition to nonlinear dissipation. Results will be interpreted in terms of extensions to existing theories of two-dimensional turbulence. Optionally, the student will also learn the cleanroom nanofabriaction techniques necessary for the construction of the resonators, or include the effects of rotation in the experiment.
------------------------------
Cílem projektu je změřit a porozumět turbulentní disipaci supratekutého helia-4 v kvazi-2D nanofluidických systémech s několika různými typy geometrie okrajových podmínek v teplotním rozsahu přibližně 1,3 - 2,17 K.

Student použije techniku kapacitního můstku k charakterizaci nanofluidických Helmholtzových rezonancí a změří přechod k nelineární disipaci. Výsledky budou interpretovány v rámci rozšíření existujících teorií dvourozměrné turbulence. Volitelně se student také naučí techniky nanofabrikace v čistém prostoru nezbytné pro konstrukci rezonátorů, nebo zahrne vliv rotace na experiment.
References
L. Skrbek et al., Fyzika Nizkých Teplot (Matfyzpress, Prague, 2011)

P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2014)

R. H. Kraichan and D. Montgomery, Two-dimensional turbulence, Rep. Prog. Phys. 43, 547-619 (1980)

E. Varga et al, Observation of bi-stable turbulence, Phys. Rev. Lett. 125, 025301 (2020)

E. Varga, J. P. Davis, Electromechanical feedback control of nanoscale superflow, New J. Phys. 23, 113041 (2021)

Y. P. Sachkou et al., Coherent vortex dynamics in a strongly interacting superfluid on a silicon chip, Science 366, 1480 (2019)

G. Gauthier et al., Giant vortex clusters in a two-dimensional quantum fluid, Science 364, 1264 (2019)

Johnstone et al., Evolution of large-scale flow from turbulence in a two-dimensional superfluid Science 364, 1267 (2019)
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html