Transition to quantum turbulence in nanofluidic Helmholtz resonators
Thesis title in Czech: | Přechod do kvantové turbulence v nanofluidických Helmholtzových rezonátorech |
---|---|
Thesis title in English: | Transition to quantum turbulence in nanofluidic Helmholtz resonators |
Key words: | Supratekuté hélium|kvantová turbulence|dvou-rozměrné systémy |
English key words: | Superfluid helium|quantum turbulence|two-dimensional systems |
Academic year of topic announcement: | 2022/2023 |
Thesis type: | diploma thesis |
Thesis language: | angličtina |
Department: | Department of Low Temperature Physics (32-KFNT) |
Supervisor: | Mgr. Emil Varga, Ph.D. |
Author: | hidden![]() |
Date of registration: | 05.10.2022 |
Date of assignment: | 05.10.2022 |
Confirmed by Study dept. on: | 28.02.2024 |
Date and time of defence: | 11.09.2024 10:00 |
Date of electronic submission: | 18.07.2024 |
Date of submission of printed version: | 18.07.2024 |
Date of proceeded defence: | 11.09.2024 |
Opponents: | Clinton A. Potts |
Advisors: | doc. RNDr. David Schmoranzer, Ph.D. |
Guidelines |
The goal of the project is to measure and understand the turbulent drag experienced by superfluid helium-4 in a quasi-2D nanofluidic systems with several different boundary geometries in the temperature range of approximately 1.3 - 2.17 K.
The student will use a capacitance bridge technique to characterise the nanofluidic Helmholtz resonances and measure the transition to nonlinear dissipation. Results will be interpreted in terms of extensions to existing theories of two-dimensional turbulence. Optionally, the student will also learn the cleanroom nanofabriaction techniques necessary for the construction of the resonators, or include the effects of rotation in the experiment. ------------------------------ Cílem projektu je změřit a porozumět turbulentní disipaci supratekutého helia-4 v kvazi-2D nanofluidických systémech s několika různými typy geometrie okrajových podmínek v teplotním rozsahu přibližně 1,3 - 2,17 K. Student použije techniku kapacitního můstku k charakterizaci nanofluidických Helmholtzových rezonancí a změří přechod k nelineární disipaci. Výsledky budou interpretovány v rámci rozšíření existujících teorií dvourozměrné turbulence. Volitelně se student také naučí techniky nanofabrikace v čistém prostoru nezbytné pro konstrukci rezonátorů, nebo zahrne vliv rotace na experiment. |
References |
L. Skrbek et al., Fyzika Nizkých Teplot (Matfyzpress, Prague, 2011)
P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2014) R. H. Kraichan and D. Montgomery, Two-dimensional turbulence, Rep. Prog. Phys. 43, 547-619 (1980) E. Varga et al, Observation of bi-stable turbulence, Phys. Rev. Lett. 125, 025301 (2020) E. Varga, J. P. Davis, Electromechanical feedback control of nanoscale superflow, New J. Phys. 23, 113041 (2021) Y. P. Sachkou et al., Coherent vortex dynamics in a strongly interacting superfluid on a silicon chip, Science 366, 1480 (2019) G. Gauthier et al., Giant vortex clusters in a two-dimensional quantum fluid, Science 364, 1264 (2019) Johnstone et al., Evolution of large-scale flow from turbulence in a two-dimensional superfluid Science 364, 1267 (2019) |