Thesis (Selection of subject)Thesis (Selection of subject)(version: 390)
Thesis details
   Login via CAS
Development and analysis of monotone numerical schemes
Thesis title in Czech: Vývoj a analýza monotónních numerických schémat
Thesis title in English: Development and analysis of monotone numerical schemes
Key words: cross diffusion|existence of solutions|FE-FCT stabilization methods|positivity preservation
English key words: cross diffusion|existence of solutions|FE-FCT stabilization methods|positivity preservation
Academic year of topic announcement: 2017/2018
Thesis type: dissertation
Thesis language: angličtina
Department: Department of Numerical Mathematics (32-KNM)
Supervisor: prof. Mgr. Petr Knobloch, Dr., DSc.
Author: hidden - assigned and confirmed by the Study Dept.
Date of registration: 27.09.2018
Date of assignment: 27.09.2018
Confirmed by Study dept. on: 29.10.2018
Date and time of defence: 06.11.2024 10:45
Date of electronic submission:15.07.2024
Date of submission of printed version:15.07.2024
Date of proceeded defence: 06.11.2024
Opponents: Dr. Matthias Möller
  doc. RNDr. Petr Sváček, Ph.D.
 
 
Guidelines
The aim of the thesis is to develop and analyze monotone discretizations of problems of the mathematical physics. A typical example are convection-diffusion-reaction equations or transport problems, nevertheless the research may cover also other problem classes. An important part will also be an efficient numerical solution of the discrete problems which are often nonlinear.
References
Recommended literature:
T. Ikeda: Maximum principle in finite element models for convection-diffusion phenomena, North-Holland, Amsterdam, 1983.
D. Kuzmin: A guide to numerical methods for transport equations, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2010.
M.H. Protter, H.F. Weinberger: Maximum principles in differential equations, Springer, New York, 1984.
P. Pucci, J. Serrin: The maximum principle, Birkhäuser, Basel, 2007.
H.-G. Roos, M. Stynes, L. Tobiska: Robust numerical methods for singularly perturbed differential equations, Springer, Berlin, 2008.
T. Vejchodský: Discrete maximum principles, Habilitation Thesis, Charles University in Prague, 2011.
journal literature provided by the supervisor
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html