Gradient polyconvexity and its application to problems of mathematical elasticity and plasticity
Thesis title in Czech: | Aplikace gradientní polykonvexity na problémy matematické pružnosti a plasticity |
---|---|
Thesis title in English: | Gradient polyconvexity and its application to problems of mathematical elasticity and plasticity |
Key words: | slabá konvergence, Sobolevovy prostory, konvexita |
English key words: | weak convergence, Sobolev spaces, convexity |
Academic year of topic announcement: | 2017/2018 |
Thesis type: | diploma thesis |
Thesis language: | angličtina |
Department: | Mathematical Institute of Charles University (32-MUUK) |
Supervisor: | prof. RNDr. Martin Kružík, Ph.D., DSc. |
Author: | hidden![]() |
Date of registration: | 25.01.2018 |
Date of assignment: | 25.01.2018 |
Confirmed by Study dept. on: | 29.03.2019 |
Date and time of defence: | 10.06.2019 10:30 |
Date of electronic submission: | 10.05.2019 |
Date of submission of printed version: | 10.05.2019 |
Date of proceeded defence: | 10.06.2019 |
Opponents: | prof. doc. Ing. Jan Zeman, Ph.D. |
Guidelines |
Student se seznámí se základními výsledky v matematické teorii pružnosti ve velkých deformacích. Cílem práce pak bude rozšířit model pružného materiálu popsaného pomocí gradientní polykonvexity na model elastoplastického tělesa. |
References |
Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63
(1977), 337–403. Ball, J.M.: Some open problems in elasticity. In Geometry, Mechanics, and Dynamics, pp. 3–59, Springer, New York, 2002. Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications. To appear in SIAM Review 59 (2017), 703-766 Benešová, B., Kružík, M., Schlömerkemper, A.: A note on locking materials and gradient polyconvexity. Preprint arXiv:1706.04055 Ciarlet, P.G.: Mathematical Elasticity Vol. I: Three-dimensional Elasticity, North-Holland, Amsterdam, 1988 |