Thesis (Selection of subject)Thesis (Selection of subject)(version: 393)
Thesis details
   Login via CAS
Úlohy stochastického programování s pravděpodobnostními omezeními
Thesis title in thesis language (Slovak): Úlohy stochastického programování s pravděpodobnostními omezeními
Thesis title in Czech: Úlohy stochastického programování s pravděpodobnostními omezeními
Thesis title in English: Stochastic programming problems with chance constraints
Key words: stochastické programování, pravděpodobnostní omezení, konvexnost množiny přípustných řešení
English key words: stochastic programming, chance constraints, konvexity of feasible set
Academic year of topic announcement: 2012/2013
Thesis type: Bachelor's thesis
Thesis language: slovenština
Department: Department of Probability and Mathematical Statistics (32-KPMS)
Supervisor: doc. RNDr. Martin Branda, Ph.D.
Author: hidden - assigned and confirmed by the Study Dept.
Date of registration: 22.10.2012
Date of assignment: 22.10.2012
Confirmed by Study dept. on: 03.12.2012
Date and time of defence: 10.09.2014 00:00
Date of electronic submission:31.07.2014
Date of submission of printed version:31.07.2014
Date of proceeded defence: 10.09.2014
Opponents: doc. RNDr. Ing. Miloš Kopa, Ph.D.
 
 
 
Guidelines
Řešitel se seznámí s úlohami stochastického programování s pravděpodobnostními omezeními, které se vyskytují například v optimalizaci ve financích (Value at Risk), civilním inženýrství a logistice. Omezení v takovýchto úlohách jsou závislá na realizacích náhodného vektoru se známým pravděpodobnostním rozdělením. Cílem je získání řešení, která jsou přípustná s předepsanou pravděpodobností. Problémy však způsobuje častá nekonvexita množiny přípustných řešení. Přesto jsou známy případy, kdy je možné konvexitu dokázat. Řešitel se zaměří na popis těchto případů s ohledem na tvar omezení a pravděpodobnostní rozdělení. Nalezené výsledky bude demonstrovat na menších příkladech.
References
R. Henrion. Chance Constrained Programming, Tutorial paper for the Stochastic Programming Conference SPXII, Halifax, 2010.

P. Kall, J. Mayer: Stochastic Linear Programming: Models, Theory, and Computation. Springer, first edition, 2005.

A. Prékopa. Probabilistic Programming. Chapter 5 In: A. Ruszczynski and A. Shapiro (eds.)
Stochastic Programming. Handbooks in Operations Research and Management Science, Vol. 10. Elsevier, Amsterdam, 2003.
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html