Thesis (Selection of subject)Thesis (Selection of subject)(version: 385)
Thesis details
   Login via CAS
Stochastic Integrals Driven by Isonormal Gaussian Processes and Applications
Thesis title in Czech: Stochastické integrály řízené isonormálními gaussovskými procesy a aplikace
Thesis title in English: Stochastic Integrals Driven by Isonormal Gaussian Processes and Applications
Key words: Isonormální gaussovský proces, stochastický integrál, stochastická diferenciální rovnice, frakcionální Brownův pohyb, volterrovský proces
English key words: Isonormal Gaussian Process, Stochastic Integral, Stochastic Differential Equation, Fractional Brownian Motion, Volterra Process
Academic year of topic announcement: 2011/2012
Thesis type: diploma thesis
Thesis language: angličtina
Department: Department of Probability and Mathematical Statistics (32-KPMS)
Supervisor: prof. RNDr. Bohdan Maslowski, DrSc.
Author: hidden - assigned and confirmed by the Study Dept.
Date of registration: 10.11.2011
Date of assignment: 11.11.2011
Confirmed by Study dept. on: 20.12.2011
Date and time of defence: 04.09.2013 00:00
Date of electronic submission:30.07.2013
Date of submission of printed version:02.08.2013
Date of proceeded defence: 04.09.2013
Opponents: Mgr. Petr Dostál, Ph.D.
 
 
 
Guidelines
Bude podrobně studována teorie stochastického integrálu v případě, kdy řídícím procesem (integrátorem) je H-isonormální gaussovský proces. Pozornost bude věnována případu, kdy Hilbertův prostor H je funkční prostor definovaný pomocí integrálního operátoru (především případu zobecňujícímu frakcionálni Brownův pohyb). Bude prověřena možnost aplikací získaných obecných poznatků v teorii stochastických diferenciálních rovnic.
References
1. D. Nualart, The Malliavin Calculus and Related Topics, Springer-Verlag, 1985

2. F. Biagini, O. Mazet, B. Oksendal and T. Zhang, Stochastic Calculus for Brownian Motion and Applications, Springer-Verlag, 2008

3. Z. Brzezniak, J.M.A.M. van Neerven and D. Salopek, Stochastic evolution equations driven by fractional Brownian motion, to appear in Czechoslovak Math. J.

4. E. Alos, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian process, Ann. Probab. 29 (2000), 766 - 801
 
Charles University | Information system of Charles University | http://www.cuni.cz/UKEN-329.html