Computational Bounded Rationality
Název práce v češtině: | Výpočetní omezená racionalita |
---|---|
Název v anglickém jazyce: | Computational Bounded Rationality |
Klíčová slova: | Konečné automaty, omezená racionalita, extenzivní hry, výpočetní složitost, algoritmy |
Klíčová slova anglicky: | Discrete finite automata, bounded rationality, extensive-form games, computational complexity, algorithms |
Akademický rok vypsání: | 2016/2017 |
Typ práce: | diplomová práce |
Jazyk práce: | angličtina |
Ústav: | Katedra aplikované matematiky (32-KAM) |
Vedoucí / školitel: | prof. RNDr. Martin Loebl, CSc. |
Řešitel: | Mgr. Jakub Černý - zadáno a potvrzeno stud. odd. |
Datum přihlášení: | 27.10.2016 |
Datum zadání: | 27.10.2016 |
Datum potvrzení stud. oddělením: | 09.11.2016 |
Datum a čas obhajoby: | 06.09.2017 09:00 |
Datum odevzdání elektronické podoby: | 21.07.2017 |
Datum odevzdání tištěné podoby: | 21.07.2017 |
Datum proběhlé obhajoby: | 06.09.2017 |
Oponenti: | prof. Mgr. Milan Hladík, Ph.D. |
Zásady pro vypracování |
Cilem prace je zkoumat zpusoby zacleneni omezene racionality do modelu extenzivnich her. |
Seznam odborné literatury |
1. Y. Shoham, K. Leyton-Brown, Multiagent Systems; Algorithmic, game-theoretic and logical foundations, Cambridge University Press 2009.
2. H. Simon, Models of Bounded Rationality, MIT Press 1982. 3. A. Rubinstein, Fimnite automata play the repeated prisoner's dilemma, Journal of economic theory, 1986. 4. A. Xin Jiang, T.H. Nguyen, M. Tambe, A. D. Procaccia, Monotonic Maximin: A Robust Stackelberg Solution against Boundedly Rational Followers, Decision and Game Theory for Security, LNCS vol.8252, 2013. |